E*g National Library
of Canada du Canada
Canadian Theses Service

Ottawa, Canada
K1A ON4

NOTICE

The qualitv of this microformis heavily dependent upon the
quality of the original thesis submittec for microtiiming.
Every effort has been made to ensure the highest quality of
reproduction possible.

i pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction i full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

* NL-339 {r. 88/08) ¢

Bibliothéque nationale

Service des théses canadiennes

AVIS

La qualité de cette microforme dépend grandement de fa
qualité de Ia thése soumise au microfitmage. Nous avons

tout {ait pour assurer une qualité supérieure de reproduc-
tion. :

S'il manque des pages, veuillez communiquer avec
I'universite qui a conféré le grade.

La gualité d'impression de certaines pages peut laisser &
désirer, suriout si les pages originales ont élé dactylogra
phiées & l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise a la L.oi canadienne sur le droit d'auteur, SRC
1870, ¢. C-30, et ses amendements subséguents.

Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7™

AN ALGORITHM DIRECTED COMPUTER AIDED
SOFTWARE ENGINEERING (CASE)
ENVIRONMENT FOR C

by

Messaouda Querd

A thesis submitted to the School of
Graduate Studies and Research in
partial fulfillment of the requirements
for the degree of Master of Computer Science

Department of Computer Science
University of Ottawa

Ottawa-Carleton Institute for Computer Science

=
1\9 Messaouda Ouerd, Ottawa, Canada, 1990

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i
!
1
i

National Library
of Canada

Bibliothéque nationale
du Canada

Canadian Theses Secvice Service des théses canagieanes

Ouawa, Canada
KA Qna -

The author has granted an irevocable non-
exclusive licence allowiing the Nationai Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in

any form or format, making this thesis avaitable - -

to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without hisfher per-
mission.

L’auteur a accordé une licence irrévocable et
nen exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
inféressées.

L'auteur conserve {a proprieté du droit d’auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celleci ne doivent étre
imprimés ou autrement reproduits sans son
autodsation.

ISBN ©2-315-62306-3

(5]

Canadi

| Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UNIVERSITE D'OTTAWA
ECOLE DES ETUDES SUPERIEURES ET DE LA RECHERCHE

i

UNIVERSITY OF OTTAWA
SCHOOL OF GRADUATE STUDIES AND RESEARCH

PETWISSION DE REPRODUIRE ET DE DISTRIBUER LA THESE - PERMISSION TO REPRODUCE AND DISTRIBUTE THE THESIS

NOM DE L'AUTEUR®-NAME OF AUTHOR

OUERD, Mpussaouda

ADRESSE POSTALE-MAILING AJDRESS

37-265 Daly Avenue

Ottawa, Ontario KIN 6G4

GRADE-DEGREE

M.C.S.

ANNEE D'OBTENTION-YEAR GRANTED

1990

TURE OE tA THESE-TITLE OF THESIS

AN ALGORITHM DIRECTED COMPUTER AIDED SOFTWARE ENGINEERING (CASE)

ENVIRONMENT FOR C

L'AUTEUR PERMET, PAR LA PRESENTE, LA CONSULTATION ET LE PRET
DE CETTE THESE EN CONFORMITE AVEC LES REGLEMENTS ETABLIS
PAR LE BIBUOTHECAIRE EN CHEF DE L'UNIVERSITE D'OTTAWA. LAUTEUR
AUTORISE AUSSE LUNIVERSITE D'OTTAWA, SES SUCCESSEURS ET CES-
SIONNAIRES, A REPAOCUIRE CET EXEMPLAIRE PAR PHOTOGRAPHIE OU
PHGTOCOPIE POUR FINS DE PRET OU DE VENTE AU PRIX COUTANT AUX
BIBLIOTHEQUES OU AUX CHERCHEURS QUI EN FERONT LA DEMANDE.

LES DROITS DE PUBLICATION PAR TOUT AUTRE MOYEN ET POUR VENTE
AU PUBLIC DEMEURERONT LA PROPRIETE DE LAUTEUR DE LA THESE
SOUS RESERVE DES REGLEMENTS DE L'UNIVERSITE D'OTTAWA EN
MATIERE DE PUBLICATION DE THESES.

May 8, 1990
\TE

THE AUTHOR HEREBY PERMITS THE CONSULTATION AND THE LENDING OF
THIS THESIS PURSUANT TO THE REGULATIONS ESTABLISHED BY THE
CHIEF LIBRARIAN OF THE UNIVERSITY OF OTTAWA. THE AUTHOR ALSO AU-
THORIZES THE UNIVERSITY OF QTTAWA, ITS SUCCESSORS AND ASSIGN-
EES, TO MAKE REPAODUCTIONS OF THIS COPY BY PHOTOGRAPHIC
MEANS OR BY PHOTOCOPYING AND TO LEND OR SELL SUCH REPRODUC-
TIONS AT COST TO LIBRARIES AND TO SCHOLARS AEQUESTING THEM.

THE RIGHT TO PUBLISH THE THESIS 8Y OTHER MEANS AND TQ SELL ITTO
THE PUBLIC IS RESERVED TO THE AUTHOR, SUBJECT TO THE REGULA-
TIONS OF THE UNIVERSITY OF OTTAWA GOVERNING THE PUBLICATION OF
THESES.

DA {AUTELR)

N Gaedvure AUTHOR)

* N8B: LE MASCULIN COMPREND EGALEMENT LE FEMININ
FS18-A928 BS/12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ UNIVERSITE D’OTTAWA
== UNIVERSITY OF OTTAWA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UNIVERSITE DOTTAWA E@:l UNIVERSITY OF OTTAWA

ECOLE DES ETUDES SUPERIEURES SCHOOL OF GRADUATE STUDIES
ET DE LA RECHERCHE AND RESEARCH

QUERD, Messaouda

AUTEUR DE LA THESE-AUTHG OF THESIS

M.C.S,

GHADE-DSGREE

DEPARTMENT OF COMPUTER SCIENCE

FACULTE, ECOLE, DEPARTEMENT-FACULTY, SCHOOL, DEPARTMENT

TITRE DE LA THESE-TITLE OF THE THESIS
AN ALGORITHM DIRECTED COMPUTER AIDED
SOFTWARE ENGINEERING (CASE) ENVIRONMENT FOR C

T.I. Oren
DNRECTEUR DE LA THESE-THESIS SUPERVISOR
e T

EXAMINATEURS DE LA THESE-THES!S EXAMINERS
L.G. Birta
J. Pugh

7/
- ™~
4
(t: DOYEN os‘ LD‘EED&E DESE Mwsv&es) SIGRATURE i (oem OF THE sc%::{ CRADUATE STUDIES)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I hereby declare that Iam the sole author of this thesis. I authorize University
of Ottawa to lend this thesis to other institutions or individuals for the purpose

of scholarly research.

Messaouda Querd

I furtber authorize University of Ottawa to reproduce this thesis by photocopying
or by other means, in total orin part, at the request of other institutions or individuals

for the purpose of scholarly research.

Messaouda Querd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The objectives of computer aided software engineering (CASE) systems are to irprove
productivity during the software development process and the quality of software using
software engineering concepts via automation of the software development life cycle. This

will result in a reusable software and will decrease the cost and time of software development

and maintenance.

The main concern in this thesis is with describing the features of a particular software
understanding environment for C. An algorithm directed computer aided software engineering
environment for C language has been developed and implemented. The system has been
implemented on a Sun Workstation using the Sunview window interface. It provides
computer aided software engineering tools which :

1) Assist the user in developing structured algorithms for procedural languages

2) Automatically transform a structured algorithm into a corresponding program

3) Redocument the resulting C program (or any C program developed using any other

technique) in an organized representation.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I am grateful to my rapervisor, Dr. Tuncer 1. Oren, for all the guidance and
advice he has given to me throughout my graduate studies.

I wish to thank Douglas G. King for his useful comments and the stimulating
discussions.

I would like, also, to thank with gratitude the government of Algeria for the
financial support.

My husband Arab deserves the most thanks for his infinite encouragement, moral
support, patience, and understanding.

Finally, I thank my parents for encouraging me throughout the years of my studies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT ... eeeirvrreerereessenssssessonsssescssesssssnsssssssassssessessassssssassssssssasssssssonsss creseenns iv
ACKNOWLEDGEMENTS.......ccoovniiiinmessssnsssrissssssmsssssssssssssarsasrsssasssssssssasssnesssssnssanes v
Chapter 1. INTRODUCTION.......ccciurirmmmsisssnsssasssnsssessssssssnssssasstssasssssssasssassssssnsassanas 1
Chapter 2. COMPUTER AIDED SOFTWARE ENGINEERING (CASE)......c.ccccce0uns 5

Chapter 3. ALGORITHMS AND THEIR GRAPHICAL
REPRESENTATIONS. ...t sentnessnansneessenninnsessassesssess tessssssenes 15

Chapter 4. A PROPOSED GRAPHIC SCHEME FOR ALGORITHM-

DIRECTED SOFTWARE ENGINEERING......coomsrerenereseeemssssmssrnninees 34

Chapter 5. ALGORITHM EDITING ENVIRONMENT (ALC).......occoommmmmnmnnrrsrserns 47

Chapter 6. ALGORITHM DIRECTED PROGRAMMING (CALO)........conerseveen. 62

Chapter 7. PROGRAM DOCUMENTATION (ORC)........oovmnrnsnssssssssessanssessssssssssnes 68

Chapter 8. CONCLUSION AND FURTHER RESEARCH........cooveeensccnmreeensennssns 83

REFERENCES......e...conoveoesssssmmeesssssesssssssssssssssssesesssssssssssesssssssssssssossssssssesssnssesssessssssns 85
vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DETAILED TABLE OF CONTENTS
ABSTRAC T . ouueeiecereteeescsnrvnsessiesssrsssssresssessssssassssssstrsssssssssasssassrsassssssasassssasessssassssnussnans iv
ACKNOWLEDGEMENTS

Chapter 1. INTRODUCTION

1.1 Aims and Structure of the ThesiS......ccocoieeserenneriennnniiriinr e 1
1.2 Architecture of the Algorithm Directed Computer Aided
Software Engineering Environment System............ everrresessarsentrensass 2
Chapter 2. COMPUTER AIDED SOFTWARE ENGINEERING (CASE)........c.ouuvuu.. 5
2.1 BackgroUnd......coc weeesssessenmmiensmsisssnscsisissssarmisisamsnsssnsssssssssssssotssssessorssness 5
2.1.1 Software Development Life CycCle.....ovinimenniiiiiiiininaes S
2.1.2 What is CASE ...cicvininrnininsicnenncnensssssiscsessssssssesssasaees 6
2.1.3 Examples of CASE TOOIS.....comeisiminsnimmsnisissosicmisssisiiseons 7
2.1.4 The Need for Computer Aided TOOIS.....cvvuveiirienicenrerrccnsrenirerens 7
2.1.5 The Need for Tool INtegration......cecereeeererirscstnnseensierernrisssssnncencnsenns 8
2.2 Objectives Of CASE SYSIEMS...cciveernnercrsrnsreinnsinenssnsesnnssssssinesens 9
2.3 Parts Of CASE...correinireemcrcnmsnisitnsiresisnsssssstessssstsssssssssssnsssssssssssssassane 10
2.3.1 Computer Aided Software Forward Engineering..............ccoune.u... 11
2.3.2 Computer Aided Software Reverse Engineering....ooeenininnnnncne. 11
2.3.3 Computer Aided Software Reengineering..........ccovverviivisererirunines 12

Chapter 3. ALGORITHMS AND THEIR GRAPHICAL REPRESENTATIONS....... 15

3.1 Algorithms and their Main FEatures.....c..oocevevemmeiemrcssiensnmsnnnrennconmnssecsnaens 18

3.2 Some Graphical Representations Schemes for Algorithms....................... 18

3.2.1 Decomposition Diagrams.......oueemrecrersmernnsssisssionssssmsnenenssssscnssnas 18
vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.2 Dependency Diagrams........ccccveiemmmieisestmmemnninsnssesmssssnecsssssnsoseaees 21

3.2.3 HIPO DIaZIAIMS....coivieiermiisncsssecsissnnssisistsssssesscsersessassessossonsansronson 23
3.2.4 Warnier-Otr DIiagrams........ccocormeerinismsinnniiensniosniiseieseseesesses 25
3.2.5 Structured Englisn......ccecsvisisinmiesnncnscesemscsessssossssssssssereses 28
3.2.6 FIOWCHAMS...ceivcvrieneeceeencerscsssesisanerecssresmsisssmsisssnssisssnessassmsnssssssone 30
3.2.7 NS Charts......ccoere... retsneesetehe s et ths s saeb it s b e b s st seR s st sasa b 32

Chapter 4. A PROPOSED GRAPHIC SCHEME FOR ALGORITHM DIRECTED

SOFTWARE ENGINEERING.......cccvvemmirciiesecriesessesmiessnnsensessesesesens 34
4.1 INTOQUCHON.....csrecracereraseorsrasssscssermsassasesnsssssrssesssmsassmstsassssssssssssarssssonsisnosens 34
4.2 GraphiC StIUCIUIES....cccerccrrsmnsssemserarsssrsassmssnsessrasesssesnsssesiarsersnsesessessasssaee 38
4.2.1 Program and Program Modules........ccoomiiininiiireeecceee 38
4.2.2 Sequential BIOCK......cwcvrimurmmiinisiinnnnnesniaecasmressissssasarmseseeens 39
4.2.3 Selection BlOCK...ouwwirrreeseeccnsmmneissisiresiircssniersosssensesessesaesssssessosanse 40
4.2.4 Repetition BIOCK........ccuuserrrren. e sasan s st 43
4.3 An Example of Algorithm Specification using the Graphic Scheme....... 45
Chapter 5. ALGORITHM EDITING ENVIRONMENT (ALC)cocvvirvccvcrevennce 47
5.1 Facilities provided.......ccvecenmerrcariisenscrsniiieisisincini s sssssessassssssnsassssenes 47
5.2 Architecture of the SYSIEM......cccvcercrcrcrcrrcsecssrereessnsrsersererersmsassnsenseossnsanes 60
Chapter 6. ALGORITHM DIRECTED PROGRAMMING (CALC)....covvvererrrnrecnrrrnee. 62
6.1 INITOGUCHOM. cvecvriiereenenrensssessesascscaenessescersassmresssessassesssscsssasssrssesassnssssnsssssssnnes 62
6.2 USE Of LeX..oucoerirereriensenicnenesmereesorsnssesssaesersssesssiossensesenssssssasasas smsssessssssssacs 65
6.3 Implementation of CALC.........cciiiniinsescsesssssssssnsnonsoes 66
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7. PROGRAM DGCUMEN TATION (ORC) ...covvrvnierniicinicninnseencceninnens 68
7.1 Introduction

... 68
7.2 USING ORC sttt ccececsnnsestineisnnssiinsasssssssssssssssssssssaissesssssssssssssas 73

7.3 Implementation of ORC ...t 77

7.3.1 Data Flow DIiagramsccooccvmemmesinenesisisennisioierssiseseesnsecsssesens 11

Chapter 8. CONCLUSION AND FURTHER RESEARCH ... 83
REFERENCEScoieoeeeentrreerceansansammarssssrmnsesasssssssssssassssssasissesssssssssssssssssessassossersssasane 85

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.1

Figure 2.1
Figure 2.2

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7

Figure 3.8

Figure 3.9
Figure 3.10

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

LIST OF FIGURES

Architecture of the Algorithm Directed CASE Environment.......coceein. 4
The Relationships between the CASE Terms........uvennievininicnnnisnnsennniens 10
Reengineering CYCIe. .ttt st s snsseesnenesassosacesnsanssne 13
Decomposition Diagram......cceeecrnmnsineiesicesimiessonsiessiesiorssssssssssonses 20
Dependency DIagrafl........covcceeniesnsnnesnssessisscescsesssssissessstssssssssasseses 22
The Visual Table Of CONENLS.......cccoireeriiericccrieniitninarscrareseeseseerassassnscssnes 23
An Overview HIPO Diagram......cccooevieiimicconinecsnnemasscssesessmsesssassessasess 24
A Detail HIPO DIagrami.......ccocoieieriscsennrisisessessessssesserssssessesssssssssasssssassenss 25
Warnier-Omr DIZgIam.. .o iiieimesssinseeorisssesiccsscassssesesssssessssssssssscasases 25
Warnier-Orr Diagram for the Subscription System shown

in the HIPO Diagraml......ccocencecuesunsseescesssennessnsacsnesssosssssnsseseasonsesnanens 27
A Pseudo-code Module to find the Minimum and Maximum

EIEmMeEnts in @ Sel...cccouiiinnrrccccrnrneosnieciinstnnnsesesessesnesssssssssssaassessasacs 29
Flowchart to find the Second Largest Value in a List.....ccoeccenrnccnnnceanns 31
NS Chart to find the Second Largest Value in a List....cocccecnnnicanness 33
Aims of he Unified Graphic Techniquc..........-‘......;.,.;._ 37
Main Program Block 38
FUNCHON BIOCK. i ucirteeeireiraecterseesnceeseessesessasessnmsaesensessresesesssassssasasssasesans 38
Procedure BIOCK....cuceeicmeiimieancnrnnscninisesssissacssecsonssssssensssnsssnsscsranese 39
Sequential BIOCK........cvimicrneaninsenseseainresssiesessiessesesisrssessnsessasesssansssanneen 39
A Template of an Initial BIOCK.....ccocuiviiiicivnninseniieeenriiseeneennseeaesesnnnes 40
IF-THEN BIOCK. c.cc.crsrecumesmsscssiessmcmmmesssssesssissssssssssssemsessssssssasasmssssassssssens 41
IE-THEN-EISE BIOCK..ovrvevsverersserrssssesssssesssesssssnee s ssesssesssess s 41

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.9 If-Then-Elseif Block.......ocovivriiiiniiiniiciisiesnnnnsnansanenns 42

Figure 4.10 €ase BIOCK.....occuveeciiimminicnnimniiiniiciniesncsessssissosssisnesissssssescsessssasses 43
Figure 4.11 While BIOCK...occvvverserseeersermrsessessessesemmesessesessssesesscssssen e cree 44
Figure 4.12 FOr BIOCK......covvciiininmiiiniienriettcneisnisei e ssssssesnscssssensssassssases 44
Figure 4.13 Do-While BIOCK.....ccciviiinminnnitniiicnrntr et snesnsnissesssssssessesnes 44
Figure 4.14 An Example of an Algorithm Specification......c...cecvinvnciiicesecinninieicanan 46
Figure 5.1 First Screen Of ALC....uuiviciiiinnnniininsnnnien s ssnssessssssssasssacs 48
Figure 5.2 English version will be ChOSEN. ..ottt esecrenes 49
Figure 5.3 French version will be ChOSen....i et 49
Figure 5.4 Main Screen Of ALC....uiiinmimninennncennesisnesssissesssansnsssssisssssssas 50
Figure 5.5 Specification to insert a Program BIOCK......c.coeimmiinncimininenencccsinoncccnnes 51
Figure 5.6 Insertion of Program Block and Specification to insert

an If-Then-Elseif BIOCK.....covvvvivimrenisirirrreiisssereccniin i 52
Figure 5.7 Insertion of If-then-elseif Block and Specification to insert

8 CaSE BIOCK....c.uereneenresecerensensaennssscemreasasssaneesmmsssessssoassnesssessessssasossssens 53
Figure 5.8 Insertion of Case Block and Specification to insert

2 While BIOCK....cuiiuerererriinecsniniieciniincisiisssissssisassssssssssessssssnensasssssssese 54
Figure 5.9 Insertion of the While Block Specified in Figure 5.8 ... 55
Figure 5.10 Edit Operation MemnU......ccceiieieneierrnnensrenssnssessssssisssssssssssnsssssissssresens 56
Figure 5.11 Fle MENUS......cocerneimcisiiisiiniins et ssssssssssnsnsrssasssssssssssssasssssassssasasses 57
Figure 5.12 Architecture of ALC.......cocummmmniinneniienine et e snas 61
Figure 6.1 The Screen of CALC with ALC......uvmirimrrieneiinescnenece et 63
Figure 6.2 The File Example is saved and its C version is displayed

on the CALC WiInAOW.....ccovvnminerimieiinnenistenestaisessssessnessoessesssssssssseeses 64

X1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4

Figure 7.5
Figure 7.6
Figure 7.7

Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13

A C Program to find all Lines Matching a pattern..........cocovnmnnecnrennnncn, 69

Organized Representation of the C program given in Figure 7.1............. 70
A C Program to count digits, white spaces and others.........cccoerienninnnnnns 71
Organized Representation of the C program given in Figure 7.3 72
The ORC SCTEEM...c.couiiiniceririntiarensssntiaseraissssssssesttesisessiansssasssssessesssssssss 73
The ORC’ed File of the input file specified in Figure 7.5ccocevcrnennne. 74
The Meanings of the Conversion Parameters are shown for

an Example Block in the Output..cuecccreiniecenneeiiicseseseeccscsecaecnnee 76
Defaults and Valid Values used for the parameters of ORC..................... 76
ORC Document Generator............. SO reererssmssasessttonsssranssnssearess 78
Scan Source Code.......ccommrncnnnncssnirniniisiesnisissessssssssssssssnsnsasas 79
GEnerate OULPUL........cuievieecereirernrrenesaesesssesesesncsasssasssseasasstsssssasassasssssensens 80
Generate BIOCK StrUCIUTES.......cccevveereeiiiiniiiossesecnniseesiisssssssssessosssressmsssens 81
Transformation of Comment int0 TOKEMN.ccovuiemirsnnessessnsssissemesrssssisens 82

Xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1
INTRODUCTION

1.1 AIMS AND STRUCTURE OF THE THESIS

Computer technology is developing faster than any technology, with gain in price / per-
formance. " Computer speed and power are now increasing at about thirty percent a year, but
software development productivity is increasing only four to seven percent a year." (Perrone,
Marietta, 1987, p.104) The software systems of today represent new levels of power and
complexity that greatly exceed the capabilities of traditional development process. The task of
developing and maintaining new software is difficult to manage, making it the critical task of

new systems development, and an important issue in software engineering.

Computer aided software engineering tools are designed to automate most of the tasks in the
software engineering life cycle. Better analysis leads to more effective design, easier
programming, fewer testing errors, more success during implementation, and reduced
maintenance. Automation of the software engineering process improves productivity, reduces
costs, and results in higher quality software. Usually, the system's maintainers were not its
designers, so the need for clarification, enhanced understanding, and migration of existing
software is a real problem. The purpose of software understanding is to establish a basis upon
which to carry out software maintenance. The software understanding is a term for a family of
related concepts that are concemed with providing an enhanced perception of an existing
software product. These concepts are formulated in terms of different representations of the
software product at various levels of abstraction. Concepts such as reverse engineering,
redocumentation and restructuring have become identified with various types of review
carried out on an existing software product. Reverse engineering enables information systems

to extract information from old applications and use them as the basis for maintaining those
!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applications. Reverse engineering does not involve changing the subject system. It is a

process of examination, not change or replication.

The algorithm directed computer aided software engineering system, outlined in this thesis,

is a forward and reverse engineering environment for C. The functionality provided by the
system has its origin in the generic problem of software understanding that has emerged within
the broad domain of software engineering. The system provides a subset of the features
required to perform software engineering (reverse engineering and forward engineering.)
Although the CASE tool described in this thesis has general applicability, its features are
particularly useful for the novice programmer ; i.e., the system provides a very effective
pedagogical tool.

The thesis ccasists of four parts. The first part is Chapter 2 which provides a description of
computer aided software engineering (CASE) concepts and the need for CASE tools. The
second part is Chapter 3. This part gives some existing graphical representations of algo-
rithms. The third part consists of Chapter 4. In this part, a graphical scheme for algorithms is
presented and discussed in detail. The last part consists of Chapter 5 to Chapter 7. It provi-
des the full description of the implementation of the algorithm directed computer aided

software engineering system.

1.2 ARCHITECTURE OF THE ALGORITHM DIRECTED CASE
ENVIRONMENT SYSTEM

The algorithm directed CASE environment is a software environment in which algorithms and

C programs may be created, edited and documented in a structured way. Structural elements of

the C language are represented in the form of the graphic scheme developed by Oren(1984).

The system is implemented in C language, under UNIX Sun0S 4.03 operating system, using

Sunview functions. A key component of the system is the editor, which enables structural

features of C to be manipulated in terms of their graphic scheme " box" representation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another key feature of the system is the transformation of the algorithm into its corresponding
procedural C program which is displayed in a paraliel window to the algorithm window.

As depicted in Figure 1.1, the elements of the system environment consist of the following

main components.

ALgorithm Editor (ALC):

The algorithm editor automates the process of editing structured algorithms. Templates can be
selected from a meriu of templates. They are viewed through the menu window and inserted in
the text window. The system (ALC) provides a comprehensive set of services for manipulating
templates. Other functions that can be called from the menu window include removing

templates (clear the text window), saving a block of templates as a file in the algorithm text and
print any algorithm already edited.

Object Code Editor (CALC) :

The object code editor assists a user in transforming an algorithm into corresponding code.
The output from CALC is functional and test case source code that can be verified and
compiled into machine code. Checking, detecting a number of bugs and obscurities is part of

lint (program verifier for C) process.

Organized Representation of C Programs (ORC) :

ORC, organized representation of C programs is a software tool to document correct C
programs, _The documentation which is automatically generated by ORC is a structured
flowchart of the C programs. Text window is used to display documented files. Menu

window allows the users to choose the parameters for drawing the outputs for the user taste.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

USER INTERFACE

e i w4 |

Algorithm Editor Object Code Editor Organized Representation
of C programs

Text Text
Window Tert
- - Window
=
Defaults
Window

‘uoissiwad 1noyum pauqyold uononpoisdas Jayun “saumo ybuAdoo ayi jo uoissiwiad ypm paonposday

Figure 1.1 Architecture of the Algorithm Directed CASE Environment

Chapter 2
COMPUTER AIDED SOFTWARE ENGINEERING (CASE)

2.1 BACKGROUND
2.1.1 SOFTWARE DEVELOPMENT LIFE CYCLE
Software development follows a planned life cycle which can be generalized with the following

six phases : analysis, design, coding, testing, implementation, and maintenance,

In the analysis phase, the requirements (specification of the problem being solved, including
objectives, constraints, and business rules) are determined and formally documented. In this
phase, alternative solutions satisfying the constraints are tested. A functional specification

and a logical model for the best or a feasible solution are generated.

In the design phase, the specified requirements are used to develop the detailed spzcification
for a selected solution, including diagrams relating all programs, subroutines and data flow.

The software design is the product of this phase.

The coding or programming phase uses the specification of the solution. Listings and

operational manuals will result.

In the testing phase, the software is verified that it satisfies all the requirements already men-

tioned in the analysis phase.

The implementation phase corresponds to the installing of the software. [n this phase, the
software, operational manuals, and all required documentation are delivered to the customer.

The result of the implementation stage is the final system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mairntenance phase which includes repair, modification and enhancement of the software for its
remaining life is the longest phase of the software development life cycle, since the

remaining life of the software is many times the time required to produce th: software.

2.1.2 WHATIS CASE?

CASE (Computer Aided Software Engineering) includes :
» Software automation
» Combination of tools and methods
« Repackaging of structured concepts

» Redefinition of software environment : tools, methods, hardware, management.

CASE (Computer Aided Software Engineering) refers to the automation of a specific
software engineering task or to a complete environment that automates most of the tasks in the
software engineering life cycle. The goal of CASE technology is to solve the problems
resulting from systems development through automation from analysis of the system to the
maintenance.

As expressed by Chikofsky and Rubenstein (1988, p.11) " CASE lets systems analysts
document and model an information system from its initial user requirements through design

and implementation and lets them apply tests for consistency, compactness, and conformance

to standards".

A CASE tool is any software tool which can provide automated assistance in the analysis,

design, coding, and maintenance of software systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.3 EXAMPLES OF CASE TOOLS

« Specification languages and diagramming techniques are examples of Analysis / Design
tools.

» Code generators and testing tools are examples of Implementation tools.

+ Reverse engineering tools, reengineering tools, redocumentation tools, and program

analyzers are examples of maintenance tools.

2.14 THE NEED FOR COMPUTER AIDED TOOLS

" The rapid pace at which hardware innovations are announced, particularly in the area of
microprocessor technology, now well exceeds the capabilities of our software development
technology ... An entire generation of processor hardware technology has arrived and been

superseded without any software to support it reaching the marketplace”. (Chikofsky and
Rubenstein, 1988, p. 11-12).

The factors which require for computer assistance in the process of software development, as

discussed by Shuler (1987, p.7-8) are complexity, consistency, diagnostics and prompting,

efficiency, and maintainability of documentation.

Complexity : The development of even a relatively small system requires the consideration of
enormous amounts of detail which is often impractical to maintain and evaluate without

automated assistance.

Consistency : CASE tools provide a framework for a consistent application of the selected

approach across a large number of project participants.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Diagnostics and Prompting : CASE tools provide analysts with diagnostics to improve their

work and prompting to help assure their work is consistent and complete.

Efficiency : Computer assistance increases the analyst's efficiency by automating some of the

more routine aspects of the structured analysis and design process.

Maintainability of Documentation : Since the system's documentation is prepared by automated

techniques, it can be more easily maintained than manually prepared documentation.

2.1.5 THE NEED FOR TOOL INTEGRATION

The tools in a CASE environment should be integrated so that information entered using one
tool should become available in all other tools that need it, regardless of their different

views or media (e.g., graphic or text). Three potential advantages to this are apparent :

+ First, the efficiency and productivity of CASE environment users will be improved. Tool
users should not have to re-enter information already captured at an earlier phase with a diffe-
rent tool.

= Second, eliminating redundant user input yields improved consistency between the data
stored by different tools with resulting reduction in errors.

+ Third, view translation could be provided between tools, without requiring any user input

other than selecting the tool with the desired view. This would allow the user to select the tool

with the most appropriate view.

The method for integrating tools has long been known to be a problem of importance.
Typically, this is thought to be best addressed through a central (common) database for all
tools in the environment. A CASE database can be viewed as having a scheme (both logical
and physical). So, the various tools needed ina CASE environment may have different

views of the object's information system (IS). These views can each be considered to be an IS

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model. When two IS model's views are logically the same (i.e., they consider the exact same
aspects or qualitities of the IS to be relevantand structure them the same way), we can say
that the difference between them is their physical form. For example, an algorithm (a certain
semantics) can be represented using pseudo-code in different languages (for example French
and English). Representing the algorithm in those languages are two different syntaxes for

expressing the same thing (an algorithm). The semantics of the algorithm is the same, only its

representation is different.

2.2 OBJECTIVES OF CASE SYSTEMS

CAGSE technology changes the way we build software systems by automation of the software
engineering process which improves productivity, minimizes the total cost of the system, and
eliminates many software development and maintenance tasks.

The objectives of CASE systems (McClure, 1988a, p. E1) are:

» Automate software development

» Visual/ graphical programming

* Interactive development style

» Minimize the total cost of the system

¢ Automate generation of documentation
» Automate generation of code

« Automate error checking

» Automate project management

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

» Improve software quality

* Improve productivity

* Speed up software development

» Formalize software documentation

» Standardize software documentation

o Promote greater control of software development
* Integrate development steps ahd tools

* Promote software reusability

». Improve software portability

2.3 PARTS OF CASE

The types of CASE can be grouped into :
» Computer Aided Software Forward Engineering
» Computer Aided Software Reveirse Engineering
+ Computer Aided Software Reengineering

The relationships between these terms is explained in Figure 2.1 (Chikofsky and Cross, 1990,

p. 14).
Requicaments
{constraints, '
Obpectves. Dasign Implemantation
dustness rules) : ’
Forward - Forward
e, engineering | . EnQINEENing] e eeeeeee] - _«
Reverse Reverse
_____________ engingefing e engineenng . .. bl
Design =; Design
recovery ™" recovery
S N <
Reengineering Reengineering
(renovation) {renovalion)
N . i . Redocumentation,
Restructuring Restructuring : " restructuring

Figure 2.1 The relationships between the CASE terms

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

231 COMPUTER AIDED SOFTWARE FORWARD ENGINEERING

" Forward Engineering is the traditional process of moving from high level abstractions and
logical, implementation independent designs to the physical implementation of a system.”
(Chikofsky and Cross, 1990, p. 1). Forward engineering is the process of progressing
from requirements (specification of the problem, constraints, and business rules) to the
design then to the implementation. Forward engineering translates the "what"

specification that defines an application into the "how" of its physical representation.

2.3.2 COMPUTER AIDED SOFTWARE REVERSE ENGINEERING
Reverse engineering " is the process of analyzing a subject system to :
- Identify the system's components and their interrelationships, and

- Create a representation of the system in another form or at a higher level of abstraction.”

(Chikofsky and Cross, 1990, p. 1).

In software systems, the approaches , or the concepts of reverse engineering apply to gain a
basic understanding of a system and its structure. This is very important to obtain a sufficient
design level understanding to aid maintenance and support. Reverse engineering tools can help
the system’s maintainers (who usually are not the designers) to examine and get information

about the software product so they can make appropriate changes if needed, or to adapt the

product to a different environment.

Beyond increasing comprehensibility of the system the major functions of software reverse

engineering include the following functions :

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

» Generation of alternate representation (graphical and non-graphical) which refers to
redocumentation,

» Extracting existing knowledge from a program, and recovering lost knowledge i.e.,
software elucidation,

+ Transformation and recasting of code, data, design / algorithm or requirement ; i.e.,

software restructuring.

233 COMPUTER AIDED SOFTWARE REENGINEERING

) Reenéineering, also known as both renovation and reclamation, is the examination and
alteration of a subject system to reconstitute it in a new form and the subsequent
implementation of the new form." (Chikofsky and Cross, 1990, p. 1). Reengineering
involves or includes forward and reverse engineering. In fact, to achieve an abstract
description of the system we need to use reverse engineering and to modify any mechanism,

we need also forward engineering.

Figure 2.2 (Bachman, 1988, p. v55) shows the chart of reengineering cycle. It provides an

architectural view of CASE with forward and reverse engineering.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Forward Engineering

New

Applications

Figure 2.2 Reengineering Cycle (Bachman, 1988, Pp.v35)

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Figure 2.2 Forward engineering starts at the right top and progress from the most con-
ceptual level (requirements, design) to the most physical level (machine instruction) at the

bottom.

Across the horizontal axis, reverse engineering starts at the left bottom with the definition of

existing applications and raises the applications to successively higher levels of abstractions.

The reengineering cycle described reflects the continuity of applications systems and their
revisions over time. Each time, when the design objects created .by the reverse engineering
steps are validated and become the revised design c¢bjects, they are used in the forward
engineering process. As shown in Figure 2.2, new applications become existing applications.

This ensure the long life of a system.

* CASE products based on this CASE reengineering life cycle will have tremendous impact
on the evolution of IS practices and on the businesses that depend on computer aided applica-
tion systems for success. Three year projects will become three months projects. Being able
to do what is needed today frees IS to make changes as the business environment evolves,
rather than trying to predict three years ahead. A half dozen short term changes can offer a
business more than one grand leap, which is often misdirected and seldom well executed".

{Bachman, 1988, p. V57)

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

ALGORITHMS AND THEIR GRAPHICAL REPRESENTATIONS

3.1 ALGORITHMS AND THEIR MAIN FEATURES

A computer program can be viewed as a complex object that contains a large amount of detailed
information, This detailed information is necessary even if it obscures the structure of the
program. In order to write a program or to uﬁderstand a program, a guide to its organization

and purpose is needed. Thus, the first step is to express our solution in an abstract way at

first, omitting the details.

There are several programming paradigms. In the procedural approach, a problem can be
solved by applying a special set of instructions. Furthermore, the order of these instructions is
known a priori. The method being used to solve the problem is embodied in the algorithm.
The algorithm is an abstraction of the actual computer program. As such, it can be studied
without referring to any particular computer, programming language, compiler, etc. When we
design an algorithm to solve a particular problem, we want to know how much resources, i.e.
time (the number of steps required until the algorithm terminates) and space (the amount of
memory required to implement the algorithm) an implementation will consume. Mathematical
methods are used to predict the time and space needed by an algorithm, and this does not
require implementation of the algorithm. This is important for several reasons. The most

important is that we can save work by not having to implement algorithms in order to test their

suitability.

The meaning for an algorithm is quite similar to that of recipe , process , method , technique ,
procedure , or routine (Knuth, 1973, p.1.) An algorithm is a finite set of rules which

gives a sequence of operations for solving a specific problem. An algorithm has five

important features (Knuth, 1973, p.2.)

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These features will be highlighted using the Euclid's algorithm for finding the greatest

common divisor of two positive integers.

Algorithm E (Euclid's algorithm) (Knuth, 1973, p.2.) Given two positive integers m
and n, find their greatest common divisor, i.e., the largest positive integer which evenly
divides both m andn.
El. [Find remainder.] Dividem by n andletr be the remainder.

(Wewillhave) £ r < n).
E2. ([Isitzero?] If r =0, the algorithm terminates ; # is the answer.

E3. [Interchange.] Set m <--n, n <--r , and go backtostepEl.

The five features of an algorithm are clarified below :

1) Finiteness. An algorithm must always terminate after a finite number of steps. It is
composed of steps. Each step must be well cieﬁned ; that we can program a machine to carry
it out , if necessary. Algorithm E satisfies this condition, because after step E1 the value of r
is less than n, soif r =0, the value of n decreases the next time that step E1 is
encountered. A decreasing sequence of positive integers must eventually terminate, so step E1

executed only 2 finite number of times for any given original value of = .

"A procedure which has all of the characteristics of an algorithm except that it possibly lacks
finitene$s may be called a computational method. Besides his algorithm for the greatest
common divisor of two integers, Euclid also gave a geometrical construction that is essentially
equivalent to Algorithm E, except it is a procedure for obtaining the greatest common
measure of the lengths of two line segments ; this is a computational method that does not

terminate if the given lengths are incommensurate. " (Knuth, 1973, p.5)

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another example of computational procedure is to print positive integers. (Grogono and

Nelson, 1982, p.83). This procedure is not required to terminate. Its steps are :

1. Set N tozero
2. set N to N+1
3. Print N and go back tostep 2.

2) Definiteness. In Algorithm E, the criterion of definiteness as applied to step E1 means
that we are supposed to understand exactly what it means to divide m by » and what the

remainder is, and make sure that the values of m and n are always positive integers

whenever step El is to be executed.

3) Effectiveness. An algorithmis expected to be effective. This means that all of the
operations to be performed in the algorithm must be sufficiently basic that they can be done
in a finite length of time. Algorithm E uses only the operations of dividing one positive

integer by another, testing if an integer is zero, and setting the value of one variable equal to the

value of another.

4) Input. An algorithm has zero or more inputs, which are taken from specified sets of
objects. In Algorithm E, the values of the input data for which the algorithm is valid are stated:

m and n must be positive, nonzero integers.

5) Output. An algorithm has one or more outputs, i.e., quantities which have a specified
relation to the inputs. The sequence of control is well-defined and it is always clear which is
the next step to be executed and when the final step is executed, we have obtained the required

result. Algorithm E has one output, namely n in step E2, which is the greatest common

divisor of the two inputs.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An algorithm is therefore, a set of rules which gives a sequence of operations for solving a
specific problem and has five features which are : Finiteness, definiteness, effectiveness,

input, and output.

3.2 SOME GRAPHICAL REPRESENTATION SCHEMES FOR

ALGORITHMS
We present several graphical techniques for representing and communicating algorithms. The
idea behind the ™ pictures " we will draw is that the alternative sequence of processing steps
will be better distinguished graphically, and the " shape " or structure of the algorithm better
displayed. Given an appropriate diagramming technique, it is much easier to describe complex
activities and procedures in diagrams than in text. A picture can be much better than a thousand
words because it is concise, precise, and clear. There is a new and very important reason for
diagramming. The job of systems analysts and builders is evolving from a pencil and paper
activity to an activity of computer aided design. This change will improve the productivity of

systems builders and increase the quality of the systems they build.

In the sequel the following graphical representation schemes are discussed : Decomposition
diagrams, dependency diagrams, hipo diagrams, Warnier Orr diagrams, strucured English,
flowcharts, and NS charts.

32.1 DECOMPOSITION DIAGRAMS

Decomposition diagrams are used to show organization structures, system structures, program
structures, and report structures. High activities are decomposed into lower level activities
showing more detail. This top down structuring makes complex organizations or processes
easier to comprehend. Decomposition diagrams are a basic tool for structured analysis and

design. Most decomposition diagrams are simple tree structures.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The term activity means function , process, or procedure . Functions refer to major areas

of activity in a corporation, engineering, production, research, and distribution.

The term process refers to an activity without describing the mechanisms by which it is
accomplished. The process does not indicate the precise method by which the results are

accomplished.

Procedure refers to a specific method of accomplishing the process ; It refers to the design
carried out by a system analyst. The procedure may refer to document, data flow, screen
interaction, and program steps. Figure 3.1 (Martin and McClure, 1985, p. 369) is an

example of decomposition diagram.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

POLICY Y

9

- A
SELL TO l ' (SERYICE A " PROCESS - Y [TeMIINATE
CCUSYOMER C POLICY .o (E-i'_a CLAIM ::-'3 A POLICY -

A U RRRHGE F
L ! L B CRURRECER -
o A of o)

T APPORTION N
REMITTANCE)

CALCULATE -~
PREFILA -

.PAT POLICY '

 HOLLER ~%°;

- FOVISE .
REPRESENTATIVE

PALETTE

Activity: Optional: ~— @ —=
Sequence: VW D Mutually exclusive:

One-with-many: < N ——E

Figure 3.1 Decomposition Diagram (Martin and McClure, 1985, p. 369)

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.2 DEPENDENCY DIAGRAMS

In the decomposition diagram, the activities form a hierarchy, but we don't known if certain
activities are dependent on others or not. A dependency diagram has blocks showing activities
and arrows between blocks showing that one activity is dependent on another. A time
dependency exists between two activities if one cannot be carried out until the other has been

completed. The arrows in a dependency diagram are often marked with data which are

created by one activity and used by another.

There are three types of dependencies which czn apply to functions, processes, or procedures

(Martin and McClure, 1985, p. 81). These are resource, data, and constraints dependencies.

1)} Resource dependency : One activity (A) produces or modifies some resource ; Activity
(B) uses this resource, for example DELIVER ORDER cannot occur before PICK GOODS,
because there would be nothing to deliver.

2) Datadependency : Activity (A) creates or updates some data and activity (B) uses that
data, for example CREATE BACKORDER cannot occur until ACCEPT ORDER has occurred
because CREATE BACKORDER needs certain data from the ACCESS ORDER process.

3) Constraint dependency : If an execution of some step in activity (B) depends on a
constraint that was set in activity (A), or the testing of a condition that was set in activity (A).
As shown in Figure 3.2 (Martin and McClure, 1985, p.90), dependency

diagrams can be made more generally useful by including additional constructs which are :

Optionality, cardinality, branching, mutual exclusivity, loops, parallelism, events, sequence,

and flow. Details are shown in Figure 3.2.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[FINANCIAL

I stock deterioration > 3%

N quality
is c%captabla Else
.
Assessed
stock
Quantity

Iy quantity

courted <
Quantity rearder level
counted \(

fssessed Stock
stock N\ deterioration

CoMP
WITH STOCK
X quantity cowxed o e I Quantity counted
= quartily recarded 3 7 years aerage sales
ﬁswce;‘l}
deman
N
Discrepancy 7
PALETTE

Process: Mutually Everk

exclusive:
Condition: se——@ = {

Flow: >

Figure 3.2 Dependency Diagram (Martin and McClure, 1985, p.90)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.23

HIPO DIAGRAMS

A HIPO (Hierarchical Input - Process - Output) diagram is a diagramming technique which

can give a general or detailed view of a system or program using three types of diagrams

(Martin and McClure, 1985, p.131). These are : Visual table of contents, overview
and detail HIPO diagrams.

1)_A visual table of contents

is a tree-structured decomposition diagram. It shows the

overall functional components of a system or program. It does not give any control informa-

tion, nor does it describe any data components. An example of a visual table of contents for

the subscription system (Martin and McClure, 1985, p.132) is shown in Figure 3.3.

The purpose of this system is to process three types of subscription transactions: new

subscription, renewals, and cancellations.

PROCESS
SUBSCRIPTION
1.0
|
PROCESS
GET VALID VALID .
SUB ITEM ITEM
2.0 3.0
l'__L_—l 1 j 1
PR
READ SUB VALIDATE NS?J:ESS PROCESS PROCESS
ITEM SUB ITEM SUBSCRIPTION | | CANCELLATION RENEWAL
2.1 2.2 : 21 32 21
| 1 |
ADD ‘ CREATE Reference
NEW CREATE AUDIT "”m:’ o
RECORD BiLL RECORD po dﬂ od
31.1 31.2 313 mors Cetal
: : HIPO diagram

Figure 3.3 The Visual Table of Contents (Martin and McClure, 1985, p.132)

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the visual table of contents, each box can represent a system, subsystem, program, or

program module. Its purpose is to show the overall functional components.

2) An overview HIPO diagram_ gives general information about the inputs, process

steps, and outputs of one particular functional components in a system (program).
Figure 3.4 (Martin and McClure, 1985, p.132) shows the overview HIPO diagram for
the PROCESS SUBSCRIPTION function in the subscription system.

Subscription System
Diagsam 1.0 Subscription

Reference number from Table of Contents HIPQ diagram

INPUT PROCESS OUTPUT

Subscription Items For afl subscription Updatad Master File
transaction items:

1. Get valid sub item
2. If new sudb, procoss new sub

Customar File 3. If ranawal, process renewal Bills/Refunds

4. If cancellation, process
cancealiation

Figure 3.4 An Overview HIPO Diagram (Martin and McClure, 1985, p.132)

3} A detail HIPO diagram provides the information necessary to understand the inputs,
processing steps, and outputs for a functional component. It represent the program design and
can easily be transformed into program code. Figure 3.5 (Martin and McClure, 1985, p.133)
is the detail diagram for the VALIDATE NEW SUB f;mction in the subscription system.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gubscription System
Disgrsm 2.2.2 Validate New Sub

INPUT PROCESS OUTPUT
—
NEW-SUB-IN
NEW-NAME
NEW-STR 1. Resst error figgs.
NEW-CITY 2. Validste nams, strest, zip,
NEW-ST and payment.
NEW-ZIP
NEW-PMT a. il errars,
sr’ tiag.
NEW-SUB-IN VALIDITY.FLAGS
3. Vilidate terms, > VALID/INVALID
NEW-TERMS b, 2.2.2.1 INDICATORS
VALID-TERMS a. W errors,
sot fiag.
VALID TERMS TABLE l

A

Reference number referring to more
detailad HIPO diagram which
expands step 3

Figure 3.5 A Detail HTIPO Diagram (Martin and McClure, 1985, p.133)

HIPO diagramming technique can describe a system or program at any varying degrees of
detail during the functional decomposition process. Detail HIPO diagrams relate data to
processing steps. HIPO diagrams have no symbols for representing detailed program

structures such as conditions, case structures, and loops.

324 WARNIER ORR DIAGRAMS

Warnier-Omr (Jean Dominique Warnier and Ken Orr) diagrams aid the design of well
structured programs. These diagrams use brackets to show the hierarchical decomposition of
activities or data. This decomposition can represent a high level overview of a program

structure or detailed program logic. It forms the basis of the Wamier-Orr design

methodology.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Wamier-Orr diagram represent graphically the hicrarchical structure of a program, a
system, or a data structure. It draws the hierarchical structure horizontally across the page

with brackets.

1)_Representation of data Figure 3.6 (Martin and McClure, 1985, p.139) is an example of a
Warnier Orr diagram of an employee file.

(FILE HEADER
STREET
EMPLOYEE (EMPLOYEE NAME
FILE 4 cITY
() ADDRESS STATE
EMPLOYEE
SOCIAL SECURITY
 FILE BODY ZEEC’ORD Y NUMBER 2IP CODE
PAY RATE " [SALARY
|EMPLOYEETYPE {

HOURLY
*{1,E)”" means that there are Dats occur in * @ “means
1 1o E employee records in the top-down either ons
the smployee fiie _ sequence ot the other

Figure 3.6 Wamier-Orr Diagram of an Employee File (Martin and
McClure, 1985, p.139)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* The diagram is read from left to right and from top to bottom within a bracket.
* The brackets enclose logically related items and separate each hierarchical level.

* The items (with meaningful name) are listed vertically.

2) Representation of Program Structure Figure 3.7 (Martin and McClure, 1985, p. 141)

shows the Warnier-Orr diagram representing a program structure.

. (BEGIN
BEGIN
READ SUB ITEM
GET VALID (",
SUBITEM < VALIDATE SUB ITEM BEGIN
PROCESS LEND ADD NEW RECORD
SUBSCRIPTION <
(sm (BEGIN
PROCESS
VALID 1TEM < DETERMINE ITEM TYPE
PROCESS NEW SUBSCRIPTION CREATE BiLL .
END
L (0,172
®
"{S)"* means that PROCESS CANCELLATION CREATE AUDIT RECORD
this is repeated (0,1)?3
S umes ®
PROCESS RENEWAL
(0.1)74
L END eno
71 end of subscription transactions = true .
72 item type = new subscription “@" means that The items are executed
73 item type = cance'lation subscription one of these three in the top-down saquence
74 item typs = renawal subscription blocks is executed shown

Figure 3.7 Wamier-Orr Diagram for the Subscription System
shown in the HIPO Diagram (Martin and McClure,
1985, p.141)

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

» When representing a program structure, each level in a Wamnier -Orr diagram has three
components : BEGIN, process step, and END.

» Each level is enclosed in vertical brackets, and the hierarchical structure is read from left to
right.

+ In 2 Warnier-Orr diagram, to indicate sequence the processing steps are included at the same

hierarchical level and are written in a vertical column one after another.

Warnier-Orr diagrams are easily translated into program code because of BEGIN -END.
The Warmier-Orr diagrams provide good documentation for data structures. They do not show

conditional logic as well as other details of algorithms.

32,5 STRUCTURED ENGLISH
Structured English is a diagramming technique to represent program structures. The figures or
the specifications have several important properties :

» They are written in such a way that a user could understand them.

* They are hierarchically structured and use indentation to reveal structures.

+ They have a similar code that will be used to implement them.

» Comments that will not be &anslated into program code are marked with asterisks.

» The detailed program structures (Sequence, condition, repetition, and case) are well

defined.
+ The sequence structure is a list of items where each item is placed on a separate line.

If the item requires more than one line, continuation lines are indented.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

» Blocks of instructions are grouped and give a meaningful name which describes their
function.

* The structures are indented to show the logical hierarchy.

« Parentheses are used to avoid AND /OR and other ambiguities.

» Keywords are written in bold font.

Figure 3.8 (Dyck, Lawson and Smith, 1979, p.221) gives an example of algorithm using
Structured English.

module minmax (imports: SET, num; exporis: small, large}
* Module to tind the smallest and largest entries in a given SET of length num.

Variables used:

SET - the given set of numbers
num - length of the set

small - smallest entry in the set
large - larges! entry in the set

® » 9 ® o

* Initialize the smalles! and largest as the first entry.

small = set,
large « set,

* Search the rest of the set for better values.

j-—2
while | < num do

[it set, < small then
small =— set;
eolse

i If set, > large then
[large - 8oy,

b 1+ 1
end module

Figure 3.8 A Pseudo-code Module to find the Minimum and Maximum
Elements in a Set (Dyck, Lawson and Smith, 1379, p. 221)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32.6 FLOWCHARTS

Flowcharts were one of the earliest forms of diagramming method. Generally, the flowchart is
not considered to be a structured diagramming technique. Its utility is limited to small
programs. For larger programs, flowcharts become very cumbersome to use. They can
show detailed logic (in an unstructured fashion) but do not give a useful overview of the
system functions. The process figure in a flowchart is a rectangular box, the decision figure
is a diamond, and the looping figure is formed by drawing a line connecting the figures of the

loop into a circle.

Flowcharts do not represent structured design. They encourage GOTO's and nonstruc-

tured code which is difficult to maintain. Flowcharts are natural, easy to learn to use, and both
easy to draw and to trace. They are too flexible to help us in consistently picturing similar logic
process. Unfortunately, flowcharts are not always successful in helping us understand the
algorithm being represented. Their major weakness is that they take up too much room. The
best way to maintain comprehensibility when moving from page to page is to decompose
instead of continuing. However, even if we try to partition a large flowchart, we still may have

as many ways of decomposing the logic as we have people trying to represent it.

Figure 3.9 (Mitchell, 1984, p.107) is an example of a flowchart showing the steps to be

performed in determining the second largest value in a list.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(START j

max @—first item
in the list

ro second
ar cst in

.
chm
ls r

let second < <
emax nrxl:m k‘gﬁ%ﬁ,",‘,’,

let ma

e emt

écs&nates
P ucm

Figure 3.9 Flowchart to find the Largest Value in a List
(Mitchell, 1984, p.107)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

327 NS CHARTS

Nassi and Shneiderman set out to replace the traditional flowchart with a chart that offers a
structured, hierarchical view of program logic. Nassi-Shneiderman charts are used for
detailed program design and documentation. Nassi-Shneiderman charts { NS charts)

represent program structures that have one entry point and one exit point and are composed of
the control constructs of sequence, selection and repetition. Whereas it is difficult to show
nesting and recursion with a traditional flowchart, it is easy with an NS chart. Also, it is easy

to convert an NS chart to structured code. However, this conversion is not unique.

The NS chart is a diagramming technique used primarily for detail program design. It is
a poor tool for showing the high level hierarchical control structure for a program. The NS
diagram technique is only a procedural design tool and cannot be used to design data

structures. In addition , although it is easy to read, it is not always easy to draw.

NS charts are motivated by a desire for compactness, a desire for convenient decom-
posability, and a concern for focusing attention on looping. Flowcharts are not compact due to
the space between figures. The construction of flowcharts permits any kind of looping at any
time ; hence, the designer is not forced to carefully plan his loops. NS diagrams force the
preplanning of all loops because instead of the connecting line of the flowchart, NS diagrams

provide a looping figure.

The process figure in NS diagrams is the rectangle, the same as in flowchart. The decision
figure is a rectangle also , but is divided into three subrectangles. The looping figure is a
rectangle. Figure 3.10 (Mitchell, 1984, p.117) shows the NS diagram for the problem

of finding the second largest item in a list.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LEVEL 1

INITIALIZE MAX AND SECOND

DO WHILE ITEMS REMAIN

CONSIDER NEXT ITEM.
Y\ IS IT GREATER THAN MAX ITEM ? /N
T - \ IS ;’I‘ GI;E:TER T;{AN ,
DESIGNATED SECOND ECOND ITEM
LET THIS BE
LET THIS ITEM BE DESIGNATED
DESIGNATED MAX SECOND
LEVEL 2
INITIALIZE MAX AND SECOND
LET MAX <¢— FIRST ITEM IN LIST
Y\ IS THERE A SECOND ITEM IN THE LIST ? /N
IS THE SECOND ITEM GREATER
Y THAN MAX ITEM ? N
THERE IS NO SECOND
LET SECOND DESIGNATE LARGEST ITEM IN A
X ITEM L
THE MA Sg;ﬁgom ‘1; ONE ITEM LIST.
LET MAX <— THE2ND| ~ " ITEM

ITEM IN THELIST

Figure 3.10 NS Diagram for finding the Second Largest Item ina List
(Mitchell, 1984, p.117)

(Note : the details of the block identified by a * at level one are
given in another block at level two)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

A PROPOSED GRAPHIC SCHEME FOR ALGORITHM-DIRECTED
SOFTWARE ENGINEERING

41 INTRODUCTION

Clear diagrams play an essential part in designing complex systems and developing programs.
When a number of people work on a system or program, the diagrams are an important
communication tool. A formal diagramming technique is needed to enable the developers to
interchange ideas and to make their separate components fit together with precision.
Structured diagramming techniques help developers deal with the large volume of details
generated during the program development process. When systems are modified, clear
diagrams are an essential aid to maintenance. They make it possible for a new team to

understand how the programs work and to design changes.

The introduction of structured techniques into computing was a major step forward.

The early structured techniques were pencil and paper methods. Today these techniques
need automation. Designs should be created with the aid of a computer. The design should be
such a form that it leads to automated code generation. Some diagramming techniques are
more appropriate than others for automation. Automation of diagramming should lead to
automated checking of specification and automatic generation of program code. Many of the
diagramming techniques of the past are not a sound basis for computerized design. They are

too casual, unstructured, and cannot represent some of the necessary constructs.

An unified graphic technique to represent algorithms and computer programs was proposed by
Oren (1984). The technique facilitates conception and design of algorithms and their
translation into computer programs, The technique has the structure preserving capability,

ie., when an algorithm is translated into a program, there exists a one to one correspondence

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the logical structures of the algorithm and the program. Similarly, computerized docu-
mentation of a program reveals the identical logical structures of the original algorithm.

» An algorithm specified according to the unified graphic notation can be implemented in
one way only. The logical structure of the program is identical to the logical structure of
the algorithm.

The basic building blocks, i.e. , sequential, selection and repetitive blocks, used in the

graphic scheme are easily understood.

« The logical structure of the algorithm can be perceived easily by using the graphic
technique.

The graphic scheme can be used for several purposes :

» Toconceive, graphically edit, and refine structured algorithms.

» To increase the chances of detection and elimination of logical errors in the algorithms
and the programs.

To generate computerized documentation of programs written in structured languages.
To develop software tools to assist a programmer in the design of structured algorithms

and in their translation into structured programs.

The unified technique allows graphic representation and stepwise refinement of algorithms
expressed as pseudocodes and computer programs, as well as computerized generation of
program documentation, Therefore the technique can enhance the activities involving

algorithm design, programming and documentation of computer programs.

%
&
4

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The unified graphic scheme has the following important features :

« An aid to clear thinking

» Precise communication between members of the development team.

» System documentation

« Enforcement of good structuring

* An aid to debugging

* An aid to changing systems (maintenance)

» Fast development (with computer aided diagramming)

» Enforcing rigor in specification (when linked to computerized specification)

« Automated checking (with computer-aided tools)

» Enabling end users to review the design

+ Encouraging end users to sketch their needs clearly

« linkage to automatic generation of code

*» Easy to read

* Quick to draw and to change

» User friendly (because the diagram is obvious in meaning and symbols and
mnemonics which the user may not understand are avoided)

» Good for stepwise refinement

* Can be printed out on normal width paper (without excessive divisions into pieces)

+ Automatically convertible to program skeleton

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The aims of the unified graphic technique is :

Requirements

1) To represent

Algorithm

Computer

Program

P Documentation
of Computer
Program

2) To facilitate

Algorithm
Design
and maintenance

Programming
and program
maintenance

4+
Documentation
of Computer
Programs

Figure 4.1 Aims of the Unified Graphic Technique

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 GRAPHIC STRUCTURES
There are four types of building blocks which are : Program modules, sequential, selection,
and repetition blocks. Last three types of blocks can be graphically nested within another block

at any desired level. The rightmost line of every block is represented by a common vertical line.

4.2.1 PROGRAM AND PROGRAM MODULES
Program and program modules are used to represent main programs, functions, and
procedures. The graphical representations of main program, function, and procedure blocks

are given in Figures 4.2 - 4.4 respectively.

main

Begin

end

Figure 4.2 Main Program Block

function (parameters)

begin

end

Figure 4.3 Function Block

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

procedure (parameters)

begin

end

Figure 4.4 Procedure Block

4.2.2 SEQUENTIAL BLOCK

Sequential blocks are represented by rectangles. Instructions to appear in a sequential block are
those not involving selection nor repetition. They can be declarations, assignment statements,

comments or any simple sequence of instructions.

varl ;= var2 + var3

Figure 4.5 Sequential Block

Initial sequential block has additional information such as :

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program : Version :

Abstract :

Variables :
inputs :
outputs :
list of variables :

Declarations :

Initializations :

Figure 4.6 A Template of an Initial Sequential Block

42.3 SELECTION BLOCKS

The basic selection blocks are if-then block, if-then-else block, if -then -elseif block, and case
block. An if-then block consists of a block of code which is exacuted if the condition specified
after "if" condition is satisfied. As seen in Figure 4.7, the scope of the block is clearly

indicated by "if endif " pair.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (condition)

Then

endif

Figure 4.7 If-then Block

An if-then-else block consists of two blocks of code. If the condition specified after if is

satisfied, then the then block is executed, otherwise the else block is executed (Figure 4.8),

if (condition)

Then

Else

endif

Figure 4.8 If-then-else Block

An if-then-elseif block is represented in Figure 4.9. The final else block is optional.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (conditionl)

Then

elseif (conditionZ)

elseif (condition3)

else

endif

Figure 4.9 If-then-elseif Block

A case block, as seen in Figure 4.10, consists of several subblocks. Only one of the
subblocks is executed after entering to the case block. The default subblock is optional and

can be used to detect and process unacceptable values of the control variable.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

switch (control variable)

case 1:

case 2:

case 13-

default :

endswitch

Figure 4.10 Case Block

424 REPETITION BLOCKS

Basic types of repetition blocks are while block, For block, and Do-while block. A While

block is executed so long as the condition expressed after while is satisfied (See Figure
4.11).

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

while (condition)

endwhile

Figure 4.11 While Block

for (condition)

endfor

Figure 4.12 For Block

A do while block is represented in Figure 4.13. It is executed so long as the condition

expressed after while is satisfied.

do

while (condition)

Figure 4.13 Do-while Block

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43 ANEXAMPLE OF AN ALGORITHM SPECIFICATION USING THE
GRAPHIC SCHEME

Figure 4.14 is an algorithm which is taken from (Stinson, 1985, p.26). It merges two sorted

arrays A and B, of lengths mand n to obtain a sorted array C of length m+n. Itis

recxpressed according to the graphical representation scheme. The resulting representation is

given in Figure 4.15. The variables smallA and smallB are used to express respectively the

minimums of the arrays A and B, and MAXINT is a huge integer.

ALgorithm merge (A,B,C,m,n) ;
var i, j, k, samllA, smallB : integer;
begin
i:=1; j:=1; k:=1; smallA := A[i]; smallB := B[j];
While k<= (m+n) do begin
if smallA <= smallB then begin
CLk] = smallA; i:=1+1;
if i<= m then smallA := A[i]
else smallA := MAXINT
end
else begin
Clx] := smallB; j:=j+1;
if j<=n then smallB := B[j]
else smallB := MAXINT
end;
k :=k+l
end

end.

Figure 4.14 An Algorithm to merge two Sorted Armrays

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm to merge two sorted arrays A and B, and obtain C

i=1

j=1

k=1
smallA := Afi}
smallB := B[j}

while k <= (m+n)

if smallA <= smallB

Lhen CIk] := smallA
i:=1+1

if ic<=m
then smallA := A[i]

else smallA := MAXINT

endif

else | Clk]:=smallB

ji=j+1
if je<=n
then smallB := B[j]
smaliB := MAXINT
else
endif
endif
k:=k+1
endwhile

Figure 4.15 An Example of an Algorithm Specification
using the Graphical Representation Scheme

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter §
ALGORITHM EDITING ENVIRONMENT (ALC)

51 FACILITIES PROVIDED

ALC is a menu driven, Computer Aided Software Engineering (CASE) environment which
helps a user to design and edit algorithms in a maner compatible with the C language. It is
based upon the notion of the unified graphic scheme and allows the user to choose between a
number of given structures which are grouped into program modules, repetition blocks, and
selection blocks. Those structures can be placed, nested, copied, moved or deleted. Any
sequential block can be added to those structures. Files, can be loaded from the file system,

stored to a directory, or printed to a laser or impact printer.

The keyword structures can be produced in French or in English. This option can be

selected in the first menu of ALC along with the corresponding user level.

A beginner user level option is also available. This option allows the beginner user to change
his mind when selecting a particular template structure. For instance, when the beginner user
selects an IF template structure, it is displayed in a pop up window in the ALC main window.
At this point ALC prompts the user as to whether or not this is the template that he wants.
This is done by displaying the following prompt in error message window : " Insert this
template YES NO". When the option YES is selected, the template is inserted at thespecified

insertion point. Similarly, when the NO option is selected, the template is not inserted and the

pop up window will disappear.

Error messages or any kind of message always appear in 2 window near the bottom of the

screen. A "BEEP" will sound each time an error occurs and the corresponding error message

will be displayed in that window.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The structure window is the largest window and the most important in the main screen of ALC.
As the structures are selected, they are displayed in that window. When a structure is selected,
its relative position within the file is verified. If it is a wrong position, a "BEEP" will sound,
an error message will appear in the lower window, and the structure will not be inserted in a
wrong place. For the case CASE and IF-ELSEIF-ELSE template structures the user will be
prompted for additional information. This information will be the number of additional
ELSEIF's etc... that the user wants inserted. The list of the parameters of the procedures and
functions is inserted in the text window after the name of the procedure or function between

brackets. A setof fonts is also provided.

Finally, a help screen can be invoked at any time. This option displays a file named
"ALC.HELP" in a pop-up window over the text window containing the algorithm structures.
This file gives a description of the functionality and how to make use of each option in the
system. ALC must be invoked from the suntools environment. To getinto suntools
environment, type suntools from the Sun unix environment. Then type ALC. The first screen

is:

Setect tha Yanguage and leve)

By pressing ths left button
0f the acuss, then 0K |

Figure 5.1 First Screen of ALC

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The user can select any of the above options by placing the caret on the desired option and
pressing the left button of the mouse. Once the specification language and the corresponding
user level are chosen the user can select the button "OK" to get into the main menu. The option

YEXIT" exits ALC and returns to the suntools environment.

5*~}§§§§ Advanced level
hgi nner lonl

Setect the language and levsl
8y pressing the lsft button
0f the mouss, then OK !

X1

Figure 5.2 English Version will be chosen

" ALC Computer-Aided Aladr itk ['esxon

P L
PN . : ,. : a8 P

Mivesu avanco
Nivesu debutang

Setect the language snd Tevsl
By prassing the Isft button
Of tha wouse, then 0K !

Figure 5.3 French Version will be chosen

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The main screen of ALC when the English version is selected is given in Figure 5.4,

B
f Mescages ¢

P IR PR n 5o 0 £ 1 & o £ O 8 4 DR e 2 g £ b 2 oo 4 a3 I 0 g 8 b S e ST S e e Lo o sy O S o o v b N AN (e 1 S0 e pe 0 a S D N e v e 00 O B e e b oo o e

37
%+
3
35
57

Figure 5.4 Main Screen of ALC

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following figures show the details of editing and updating algorithms. Figure 5.5

shows the screen with specification to insert a program block.

Computer—Aided Algorithm Design

Flle_aame : ,] Che— 1 I

Procedure Kon Blecks) [Repetition Kioc Sequential Block splay Belp_T1le ctury or Exit
r Feaction

-
>

| Messages

Figure 5.5 Specification to Insert a Program Block

a1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Figure 5.6 gives the main screen after the insertion of a program (invoked in Figure 5.5)

and specification to insert an If-Then-Elseif block.

0 ::., , At ‘ ,_ Tt g R e I T A T A S
Computer-Aided A}gorithm Desisn
Flle_oame ; |] ~Pont |

- 34-f Iseai-bls

R

: 11 4
12
o 13 P
40

15 §

Messages :

o v

Figure 5.6 Insertion of a Program Block and

Specification to insert an If-Then-Elseif Block

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.7 represents the main screen after the insertion of the If-Then-Elseif block (invoked in

Figure 5.6) and specification to insert a case block.

{THEN | B

ELSEIF
!
ELSEIF
.
l
ELSEIF
i {
| ELSE
ji | ExDIF
A

Figure 5.7 Insertion of If-Then-Elseif Block and

Specification to insert a Case Block

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The insertion of the case block (invoked in Figure 5.7) has been completed. The user specify

an insertion of a while block.

Sclection Blocks mu waie
R - - - LR ,ﬂ'-tm
So-Loop X

L]
H
DEFAULT
[

{
END SVITCH

ELSEIF

I
ELSEIF
P

|
ELSEIF

S e @ mamann § A P —t—t—

IR LY '"'rl’i-’}l-).*}.m20:’}3\’:')}:07;20»Z-)49:6‘-ﬂ‘-‘nr.,.n'4‘.\'.\‘.\‘.\'«u\‘-A'n'.*.\x\u*nw\'.\-.\-.vw.\ N A A

Figure 5.8 Insertion of Case Block and
Specification to Insert a While Block

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.9 shows the insertion of the while block (invoked in Figure 5.8).

.............. Lyoaas e Eregenror AN . T, ot o o B A AN AR RN

Computer—Aided Algorithm Design ' ‘
File_name : [] (Tt) | {_ﬂ'@ | Eﬁe—ﬁ 1 (e)
d(Progran Hodules Selection Blocks) (Repeti{tion Biecks] (SequensTal Bloc Diaplay Help_file Rotura te NTin Mene '
DR Retura te Sustesls "
; MAINQ) N
<
i BEGIN
.
IF
L]
THEN E SYITCH
L]
| | CASE
L]
| WRILE
e
| o !
| END WHILE
.
CASE
[]
|
L]
DEFAULT
L]
|
]
| END SYITCH
ELSEIF
¢ |
] |
} ELSEIF
l .
} |
. !
} ELSEIF)
1L) |} e e o e o o o e e e o e o —mom—— e esveesa s oo H
l Messages :

Figure 5.9 Insertion of the While Block Specified in Figure 5.8

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Editing Functions
This menu, represented in Figure below, is one of the most important menus. It allows the

user to manipulate the different structures within the algorithm.

Edit]
Delete Block
Copy Block

Place Block
Move Block

Figure 5.10 Edit Operations Menu

« Copy Block

This selection is used when one wants to copy a block, i.€. a structure from one area to
another. This is done by placing the cursor inside that block, and selecting this option. A copy
of that block will be put in a buffer. To retrieve the copy of the block, use the Place block
option within this menu. Once the block is in the buffer, it can be placed as many times as

wanted. The structures within the block being moved will also move with the block.

» Move Block
To move a block, place the cursor inside the selected block and select the Move Block option.
This will cause the block selected to disappear. To retrieve the block, use the Place Block

option. As many copies of the block as wanted may be retrieved.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

» Delete Block

This option can be selected by positioning the arrow on this label and pressing the left button
on the mouse. It allows the user to delete a block of text. The following steps show how to
delete a block of text.
- Place the cursor arrow at the desired template structure to be deleted and then click the
left button on the .nouse.
- Place the cursor arrow inside the edit panel, click the left button on the mouse, and

without releasing the button move the cursor arrow up or down in order to select the

Delete block option.

« Place Block

After selecting the Copy Block or Move Block option, this will retrieve the block last copied

or moved and place it at the cursor location.

File Menu Window

Most of the File menu is directly related to operations done on files. The file menu is

given in Figure 5.11.

File

Clear Screen
Load from current directory
Save to current directory

Figure 5.11 File Menu

» Clear Screen
The reset option is used when the user is finished with the current algorithm and plans to start

another one. This operation will clear the text window of any text and the window

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in which the file name is entered. If any of the text has been modified, the user will be
prompted with the following message in the errors message area. " Erase the current file in the
text window YES NO". Choosing the YES option, clears the text window of zay text,

and any edits or changes made to the file in the text window will be: lost.

*» Load File
This option allows the user to load an existing file into the text window. To be able to do so,
the user will first have to specify the file name in the window marked : File_name

Enter a file name and try the load option.

+ Save File
When this option is chosen, the file under the name that is currently specified in the file name

window will be saved.
* Print File

To be able to print a file, the user has to move the cursor to the print window and enter a file

name. He can use either the laser printer or the impact printer.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Error messages window

When an error occurs, a "BEEP” will sound and a message will be displayed in the error
message area. These are the most important errors which can occur and the possible solutions
that may eliminate the errors. The user can press on the help option each time an error
message is displayed to find the solution. The errors concern the rules applied to the indenta-

tion of the ¢ tructures. Some examples of the rules are the following :

- One of the Main module can exist in a program and can occur only at the first level.
- An "if" structure can not be inserted on the line boxe of the graphic scheme.

- A while structure can not be inserted in a struct block.

- The others rules are most of them the C language rules for the structures.

The following error messages are displayed on the window situated at the lower bottom

of the screen:

- File Cannot be saved : means system error occurred in trying to save the filc to the disk.

So the user has to try again.

- File name was not specified : Tried to either load, save or print a file, but did not enter a

file name in the window marked : File name

So the solution is the to enter a valid file name and retry the option.

- Invalid file name specified, file cannot be found : Tried to load or print a file with an invalid

file name or the file exists but not on the current directory.

Enter a valid file name and retry the option or copy the file to the ALC directory.

- Cannot perform block operation :
The user specified the starting point below the end poiat in the file.
Then specify the starting point to be above the end point in the file.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Invalid insertion point specified :
The user tried to insert text in an invalid position or tried to insert text within a block that was
marked to be moved or copied.

Then move the cursor to a new valid insertion point and retry the insertion option.

- Block has not been specified io be copied or moved :

Attempt was made to move or copy a block of text without specifying which block of text

had to be moved.

- Insertion of the template will violate the language syntax rules :
Attempt was made to insert a template structure in any position which will violate the

language syntax rules.

Editing Facilities
In addition to inserting, deleting, moving blocks, ALC allows the user to use other editing
facilities which consist of : Insertion point, deleting characters, scrolling buttons, undoing

editing operations, selecting single or span of characters and text window facilities.

52 ARCHITECTURE OF THE SYSTEM

ALC is implemented in the C language. It requires the Sun view window environment of the
Unix operating system. ALC uses many window facilities provided by the Sun view window
environment. There are several Sun view window functions and procedures called by the
ALC system. Procedures and functions have also been developed for window management
purpose. To execute the ALC system, The minimum hardware requirernent is a SUN 3 /50

workstation. Figure 5.12 shows the architecture of ALC.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O N

BLOCK TEMPLATES
SYNTACTIC
ANALYZER

SUN VIEW l l -F[I.Ems | I

-BLOCK
MENUS

Figure 5.13 Architecture of ALC

SYSTEM

USER

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Data Flow

61

Chapter 6

ALGORITHM- DIRECTED PROGRAMMING (CALC)

6.1 INTRODUCTION

CALC (Object Code Editor) is a software tool which translates structured algorithms,
produced by ALC using the graphic scheme documented in chapter 4, into C programs.
The algorithms edited in ALC are automatically compatible with the C language. When

creating program structures using ALC, the syntax of the language C is verified as the blocks

are inserted. This guarantees compatibility.

Given a structured algorithm, the major functions of CALC are:

* To transform keywords used in the structured algorithms into their corresponding keywords
in C language.

* To remove all the boxes used when editing structured algorithms.

* To properly indent the C program obtained, to show the block structure.

The use of an ASCII format for the saved algorithms of ALC, allows CALC to be implemen-

ted as a simple text translator.

The CALC window interacts with the ALLC window to allow the user to edit either the code
or the corresponding algorithms. Any updates made in the algorithm are reflected in the C
program but not the reverse. Figure 6.1 and Figure 6.2 show the screen of ALC with CALC

when editing algorithm.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S R e S A A R R R R N N A I
Computer-Aided Aljorlthn Design
nle_nue P, |]) l CThe)

_mm (Selection Blocka) (Repetition Blecks) {Scquential Bieck) (Dlsptay Eeip_file

;

%

BT B R b b o

=
-

Messages :

Figure 6.1 The Screen of CALC with ALC

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After saving the algorithm edited in the algorithm window under the filename : example,
the C version of the file example is displayed on the CALC window.

B *': i b o "
] . —
drtiesam : oomety | I CHr J | CTne Crne .
{(Progras doduics) (eiectlon ¥iscs) (kepetleion Biocks) (equentlal Block) (Dlspiay Ee1p_?1iz) (Revurn ot Fxit)
z‘a rp—— ; - v S . O e] > =
3, ; MATNC) 7 min)
O | aearn LA

el ‘ }
;‘/'] Il_‘ N slss 1!‘1{

. I 1

R | e Y

B | ELSEIF /|) } while ;
- B . - \
{ } Y{!IL! X olan if (

‘ E E D? elas {

| [Y, !

&l | } | LOOP WHILE §

: 1 END WHILE

o ! | ELSEIF

o | i .

2 { 1 i

NG

'j','; | g0t

£

1 Messages :

e

Figure 6.2 The File Example is saved and its C Version is
displayed cn the CALC window

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 USEOF LEX

Lex isa program generator designed for lexical processing of character input streams. Lex
accepts a problem oriented specification for character string matching, and produces a program
in a general purpose language which recognizes regular expressions. The regular expressions
are specified by the programmer in the source specifications given to Lex. The Lex written
code recognizes these expressions in an input stream and partitions the input stream into tokens

matching the expressions. At the boundaries between tokens, program sections provided by

the programmer are executed.

The Lex source file is a table of regular expressions and corresponding program fragments.
The table is translated by the Lex tool into a program which reads an input stream, and
partitions the input into tokens which match the given expressions, as each such token is
recognized, the corresponding program fragment is executed. The recognition of the
expression is performed by a deterministic finite antomaton generated by Lex. The program

fragments written by the programmer are executed in the order in which the corresponding

regular expressions occur in the input stream.

In general, Lex can be used for simple transformations, or for analysis and statistic gatherir.g

on a lexical level.

In the case of CALC as each token is recognized in the ALC input by the lexical analyzer,

the Lex written code outputs the appropriate C language construct.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 IMPLEMENTATION OF CALC

CALC program is a Lex specification. It uses boxes and keywords as tokens. Lex will divide
the input (structured algorithm) into tokens. Actions (to be performed when each token is
recognized) are provided in CALC specification.

The format of the Lex specification is :

{ definitions }

% %

{ rules }

% %

{ programmer subroutines }

In general, the definitions part is optional. For CALC, the definitions are the ALC keywords,
boxes, white spaces and line delimiters. They are used to simplify the format of the rules.

They provide convenient short forms for use in the regular expressions.

The rules represent the programmer's control decisions; they are a table, in which the left
column contains regular expressions and the right column contains actions , program fra-

gments to be executed when the expressions are recognized. An example of rule is given

below :
HELSE" {

* someCcode */

1

This rule has to look for the string "ELSE" in the input stream and when recognized executes

the program fragment code between the two braces. This code fragment can access C

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

subroutines present in the programmer subroutines section of the specification.

In CALC specification the host procedural language is C and the C library function are also
used.
By using the ALC sorce format, translation to other procedural languages can be provided by

writing a translator like CALC for each target language.

To simplify the implementation of back-spacing to cance! indentation, the subroutine
rev_indent () inserts ASCII back-space characters in the output. The output is then processed
by a program called translator to interpret the back space as deletions of the preceding blarks.

The appropriate characters are completely removed from the output.

67

“
4§
1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

ORGANIZED REPRESENTATION OF C PROGRAMS (ORC)

7.1 INTRODUCTION
ORC (Organized Representation of C Programs) is a software package to document
syntactically correct C programs. The documentation which is automatically generated by

ORC is a structured flowchart of a C program.

ORC accepts as input a C scurce file which may consist of a complete C program, or one of
several subprograms (procedures and / or functions). The graphic scheme used in ORC was
documented in Chapter 4. When documenting the programs, the statements which are too long
to fit on one line are intelligently wrapped onto several lines. The lines are wrapped at word,

or token boundaries, whenever possible.

ORC is implemented on a Sun Workstation. It is written in C using SunView functions.
Examples of OR m

The following two examples show the types of documentation generated by ORC. The first
example is provided to show the graphical representation of an if-then-else, a while, and a for
structures. Figure 7.1 is a C program to find all lines matching a pattern and Figure 7.2 is the
ORC'ed documentation of the C program. The second example depicts the graphical docu-
mentation of a case statement. Figure 7.3 shows a C program to count digits, spaces and
others characters. Figure 7.4 provides the ORC'ed documentation of the C program which is

given in Figure 7.3.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#define MAXLIGNE 1000

main{) /* f£ind all lines matching a pattern */
{

char ligne[MAXLIGNE]:

while (avoirligne (ligne , MAXLIGNE } > 0}
if (position (ligne,"the™) >= 0)
printf ("%s",ligne):

avoirligne (s,limite} /* get line into s, return length */
char s[]}:
int limite:

{

int c,i:

i=0;

while (--limite > Q0 && (c=getchar() } != EOF && c != '\n’)
s{i++] = ¢;

if (¢ == ’\n’)
s[i++] = ¢;

s[i] = "\0’

return (i)} ;

position (s,t) /* return index of t in s, -1 if none */
char s{l, ti):
{

int 1 , 3, k:

for (i= 0:s[i] != 707 ; i++) {
for (j=i; k=0 ; t([k}] !='\0’ && s(j] == t[k]: j++, k++)

if (E[X) == 7\O’)
return(i);

} .
return({-1} :

Figure 7.1 A C Program to Find all Lines Matching a pattern

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- owEsaswmen§

LT T T L]

| 9 define MAXLIGNE 1000

| main()

| /* find all lines matching a pattern */

e e —ewr PCmr e - - - - - —_——— - ———
) char ligne [MAXLIGNE];

o e G R E e ———————— - - - - = —

R Rl Ll R U S

I
|
|
I] te==e=- -
| 1 ITHEN|printf{=sa®,ligne);
| | $emecmemeacecomenn ————
{ |ENDIF
| 4-wcecoscccn- --
| ENDWHILE
Lx 1Y e - e - - - -
tm- - —eenneon T meoEEeen +
I avoirligne(s,limite) i
| /% got 1ine into s, return length */ t
4oem -—-- *
| char s[); }
| int limite; !
+ —— +
| int c,1; |
| 10; !
emsremm—————————— - J— —— —— +
| while(~=limite>0&& (c=getchar()) |=EOFséci="\n") |
i+ -—- - -— +
1 Is[i+s])=cy |
|+ -— +
| ENDWHILE |
[——— cmemmreemee—ee e m—a . a——— ———— +
| 1f{e=="\n"} |
| 4emmmmemmmeemee- B LT L TP P ———— +
| ITHEN)s[i++]=c; |
[B e et ——- +
| ENDIF I
fommmcmrmm———————— - et e ————— +
1 s(1]="\0’; 1
| return (i); |
B P oy E N N D O O S S A8 8 N A e o 4P B ey 0 B - - -
. B R o -— ——— +
| positioni{s,t) i
| /* return index of t in 3, -1 {f none */
L - ~—— +
I char al],tl); i
- _—— - +
) int &,3,k; {
- - - v = oy = o - -+
| for(l«0;s(l}!=07;1++) i
| #omsmmmmmmm—an meemmtreemcmccacescmeeseemmmomnaas ———
tfor (3=1;ke0;t (k1!='\O’aés[J]m~t[(R);I++, k+4) i
| #=emmccccmccccmcccmcmcccccnmane st s asemem e ne e ———— ———
|]
[B T ——
|ENDFOR
bommmm—————— -

{ 4= B e e Tt ———

| |ITHEN|return (1);

l
1
|
|
|
|
| {1f{t[k]==*\0"}
|
)
!
|
|
!

| 4rm—mr——o—————— B e et L —
|ENDIF
tmmmn - — e e s e et e e —r e ———————————— +
ENDFOR |
| return (=1}); |
P T T T P P Y Y - - o o i - -

Figure 7.2 Organized Representation of the C Program given

in Fiqure 7.1.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

main() /* count digits,white space,others */
{ .
int ¢,i,blancs,autres,chiffre[10);
blancs = autres = 0 ;
for {(i=0;i<10;4i++)
chiffre[i] = 0:
while ((c=getchar()) !=EOF)

switch (¢) {
case ‘0’
case 1’
case "2/
case '3’
case ’4’
case ’'5’
case '6'
case 7’ :
case '8’
case 97 :
chiffrefc-'0’J++;
break;
case ’'\n’ :
case '\t’ :
case ' '/
blancs++;
break:
default :
autres++;
break:;

}

printf("chiffres=");
for (i=0;i<10;1i++) {
printf ("%d",chiffre[i])};]
printf("\blancs espace =%d,autres = %d\n",blancs,autres);

}
}

Figure 7.3 A C Program to count digits, white space and others

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+-----------n-:uzu-n-.---‘-:-.---------n---‘-:-----------nnn:un:-x:n:xx:-‘--‘-;===x==ﬂ-+

| main(} |
| /¢ count digits,white space,cthers */ i
e et L L e L L L L L e Lt P +
| int ¢,1,blancs,autres,chiffre(10]; i
| blancs=autres=0; |
G e e e e +
{ for({i=0;1<10:;1i++) |
| #emmmem e e e e e e e e e e e e e e e M e e e e —e e e —a———— - +
| Ichiffre[il=0;
] e e e e e e e e e e c e n e e ——— +
| ENDFOR |
N e e L et L e et L T +
| while({c=getchar (})!=EOF) i
| e e e e e e e e e +
| |switch({c) |
| | 4mmmmm e e e e e e e e m e e eCm e edeem—————————— +
1 | | case *0': |
| | | case *1’: |
I 1 | case ‘2': |
|] | case *3': |
| I | case *4': |
| | | case *5'; i
] 1 | case *'6': |
| | | case ’7°':
i | | case ’8’: |
| 1 | case *9’: |
| 1 | #emermemee e e e e e s S Csadsss e e +
i 1 | lchiffre[c-f0’)++; |
I | |<=|= break; {
B e et e L e +
		case '\n’:
		case *\t':
		case '':
I I T e +		
t		Iblancs++;
		<=
	Ammmmmmm oo m e e st dedeemtesememe e mm——m—— - +	
It 1 default:		
I B I et e ittt Sttt il +		
I b	lautres++;	
)		I<=
[T e et D e T Lttt e L b +		
!	ENDSWITCH j	
T et e ittt +		
ENDWHILE		
e e e e e e e +		
printf("chiffres=");		
B e e - ¢ e e e +		
for(i=0;1<10;i++) i		
T T i et e +		
tprintf(~td",chiffre(i])):		
tprintf(®\blancs espace =%d,autres = %d\n",blancs, autres};		
4umemccccccemr e o et e e e r e e e e e e e e — e e —————. +		
ENDFCR .		
P E R S e B bt 2ttt T g D e LR ot ot el e ot L 4

Figure 7.4 Organized Representation of the C Program given
in Figure 7.3.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 USING ORC
Once the user types ORC, the screen given in Figure 7.5 will appcar.

 ORC:* Drganized Representation 0f CPrograms. . . @7 o o o -
Load Dir : /home/simi/usri/grad/ouerd/demonstration

i Input File : example

3 Output File: output

J ¥idth : [85] oy
4 Column : [2] 1 PSR
A Continuous Form? CYes

}' Page Header #11nes : [2] 8 KNS
i} Page Footer #11nes : [2] o RSN |5

K Quit |
3 =
12

_print output file 3

Lid

MALNNNN

AW AR T LR RARAN RS e v

Figure 7.5 The ORC Screen

» A set of pull down menus are provided to facilitate the use of OF

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After entering the input file and the output file, the user can select the run file option to

document the input file. The output file will be displayed on the screen. (See Figure 7.6.

below).

) “”DraanrLed"Pepresentatwon“o#'C”Prugremsv R
Load 1] [/home/siml/usrUgrad/nuerd/danonstration
Input File : exampla

d Output File: output

width : [85) o6 M]132

Colwnn : [2) 1 N 75

Continuous Form? & Yes

4 Page Header #1dines : [2) O GRENN]S

‘§ Page Footer #1ines : [21 o PSR 15

| '
e T S S VU e

Cancel
Con1n ‘'

-5

___________ assas== —-—— =S=zZ===== ettt bbbttt
define MAXLINE 1868 |
main() |
/% find all lines matching a pattern */ |
.. ——— e e m L, e ——————————
char 1ine[MAXLINE]; I
__________ ——— e memere e —————— _— —— ————
uhi1e(get11ne(l1ne MAXLINE)>B) }
....... ——— - e e e e —————— et o
,1f(1ndex(]1ne,"tha »=8) '

I it et e e P E P R P e P —+

| {THEN!printf("%s”,1ine); '
T T e -+
IENDIF !
__ _+
ENDVHILE i
——— _+
) !
::-:::=:+
R -t ttttt—ftterrog g e g~ et s P b et b - S d e e e .

Figure 7.6 The ORC'ed file of the input file specified in Figure 7.5.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A set of parameters are provided for the user of ORC. The meaning of each of the various

parameters is given below :

L J

Input File : This field selects the input filename to be processed. This file should contain
valid C source file.

Output File : This field selects the output filename to be used while processing. The output

file will contain the Organized Representation corresponding to the input file.

Width : This field sets the width parameter for the structures blocks. The meaning of the

width is shown in Figure 7.7.

L4

Column : This field sets the column parameter for the structures blocks. The meaning of

the column parameter is shown in Figure 7.7.
+ Continuous Form : This field selects the option "YES" or "NO". The purpose of this
parameter is decide whether or not the user wants the page breaks or not

in the output document.

* Page Header #lines : This field sets the header parameter. The meaning of this parameter is

shown in Figure 7.7.

« Page Footer #lines : This field sets the footer parameters. The meaning is shown in

Figure 7.7.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44— column

T S

if (t[k) ==

\0')

THEN

tlkes] = ¢;

ENDIF

Default and Valid Values of the Parameters ¢

Header lines

Footer lines

Figure 7.7 The Meanings of the Conversion Parameters arc shown
for an Example Block in the Output

In Figure 7.7, we used "[]" to represent default values of the parameters. The default values

for the ORC parameters have been chosen to provide the user with a quick and easy way to get

a nice looking output document from the ORC system. They are shown in Figure 7.8.

Default Values Valid Values
Parameter name Limit
Lower Upper

Input File none
Output File pone
Width 85 66 132
Column 2 1 5
Pe}gc Header 2 0 s

Ines
Page Footer 2 0 S

lines

Figure 7.8 Default and Valid Values used for the Parameters

of ORC

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 IMPLEMENTATION OF ORC

The purpose of ORC is to generate from a source program a suuctured output of the same
source input. The user specifies the source file to be analyzed. One string of source code will
be transmitted at a time to the lexical analyzer or scanner.

The lexical analyzer will transform each string into series of tokens. Once the entire source
program has been analyzed, the control is passed to the output generator through two

temporary files. One contains the tokens, and the other, the actual value of the non-keyword

tokens.

Since the entire program has been transformed in a series of tokens, the output generator will

reconstruct the source code by using those tokens. It will produce the same source program in

a structured fashion.
Tokens are useful to the output generator for recognizing structures of C.

This approach is used for its simplicity to recognize the structures when all the tokens are
clearly identified.

7.3.1 DATA FLOW DIAGRAMS
Figure 7.2 to Figure 7.13 show data flow diagrams of ORC.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

Source C code\ Token

Scan source Generate

parameters code output

Options Identifier

User

C code documented

Figure 7.9 ORC Document Generator

78

‘uoissiwiad noyum pangiyold uononpoidal Jayund “Jaumo WbLAdoo oy} Jo uolssiuad yum peonpoiday

Source
. Isolate
string

substring

Transform

Categorize Keyword keyword in
substring /@ token
e
Comment Identifier

Token

Transform
comment in
token

Transform

identifier in
token

Token

Identifier

Figure 7.10 Scan Source Code

79

‘uoissiwiad 1noyum payqiyold uononpoisdas Joyun4 “saumo WbuAdos sy Jo uoissiwiad yum paonpoldey

Generate
external
declaration

Token

Generate
internal

dccla;ation

Token

Generate

program
name

Identifier

Identifier

Figure 7.11 Generate Ouput

80

Generate
block
structure

‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum paonpoldey

Generate
for
Structure

|

Identifier

Ger.erate
Case
Structure

/

_@Zm

Token

While
Structure

81

Generate
Do-While
Structure

o)

OUTPU

Identifier

If-Then-Else

Token

Generate

\ Sequential

Block
/ Identifier

Figure 7.12 Generate Block Structures

Comment

Complete
Dpened comment

Transform Transform
Complete comment Open comment
in token in token

-

Identifier.

Token

Figure 7.13 Transformation of Comment into Token

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8
CONCLUSION AND FURTHER RESEARCH

An algorithm directed CASE environment has been implemented and provides important
features to enhance comprchension and understanding of algorithms and C programs. Its
main purpose is to improve productivity in systems developments and to :

« Facilitate maintenance of existing systems

+» Obtain more complete documentation

* Reuse code

» Reduce error and thereby improve quality and user satisfaction

* Built-in quality

The basic building blocks (i.e., sequential, selection, and repetition blocks} used in the graphic
| scheme do not require detailed understanding of programming. Therefore they can be taught,

learned, and assimilated very early in the education process.

The logical structure of the algorithm is identical to the logical structure of the program. It is
better seen with a graphic technique.

- The chances of detection and elimination of logical errors are increased

- Comprehension of algorithm is enhanced

- Modification of algorithms can be done with ease and it may be less error prone.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ALC is designed for ease of use by novice programmers in a teaching situation. There was a
need for something straightforward to use, particularly for novice programmers, which would
help in the construction and teaching of programs. The system provides a very important
pedagogical tool.

ALC makes the transition from design to code easier. The correct syntax (i.e, the structures
used in the algorithm follow a certain syntax) for algorithm is ensured.

The menus make the system easy to use and friendly.

The C program is displayed in a parallel window to the algorithm window. In this way, the
users can obtain immediate feedback on the coverage of program elements, while still inside an

editing session.

FUTURE WORK

The statements included in the algorithm can be checked in the C program by adding a Yacc
specification to the Lex specification used in CALC.

Furthermore, the diagrams displayed in the ALC text window can be collapsed, i.e ; only the

first n levels of structure will be shown.

The research which uses the graphic scheme continues at the Computer Science Department of
the University of Ottawa. The activities include extension of the building blocks to other
structured languages and other concepts. This includes investigation of building blocks for

"concurrent activities " as well as for object-oriented languages such as C++ and Smalltalk.

It is hoped that the syste n implemented in this thesis will prove its merits to educators as well

as to professionals for the conception and design of well-structured algorithms and programs.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

Bachman, C., A CASE for Reverse Engineering, Datamation , July 1, 1988.

Chikofsky, E.J., Cross, H., J H, (1990.) Reverse Engineering and Design Recovery :
A Taxonomy , IEEE Software.

Chikofsky, E.J., Rubenstein, B.L., (1988.) CASE : Reliability Engineering for
Information Systems . IEEE Software.

Communications of the ACM (1986.), 29: 11 (Nov.), 1023.
Dyck, V.A., Lauson, J.D., Smith, I.A., (1979.) Introduction to Computing Structured
Problem Solving Using WATFIV-S. Reston Publishing Company, Inc. A Prentice

Hall Company, Reston, Virginia.

Faroult, §., Simon, D. (1986.) Fortran Structuré et Méthodes Numériques, Dunod, Paris,
France.

Grogono, P., Nelson, S.H. (1982.) Problem Solving and Computer Programming,

Addison - Wesley.

IBM Journal of Research and Development, Programming Languages and Languages
Processors, pp.657-800 » Index, Vol.24, No. 6, Nov. 1980.

Knuth, D.E. (1973.) The Art of Computer Programming, Voi.1: Fundamental
Algorithms. Reading, Mass.: Addison- Wesley.

Martin, J. and McClure, C. (1985.) Diagramming Techniques for Analysts
and Programmers. Prentice - Hall.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

McClure, C., (1988a.) Characteristics of a CASE System. Extended Intelligence, Inc.
McClure, C., (1988b.) Introduction to the CASE Technology. Extended Intelligence, Inc.

Mitchell W. (1984.) Prelude to Programming, Problem Solving and Algorithins .
Reston.

Oren,T.1, L.G.Birta, O.Abou-Rabia, D.G.King, and R. Wendt (1990 - In Press).
E/Slam: A Software Understanding Environment for SLAM II Programs. In
Proceedings of European Simulation Multiconference (Erlangen-Nuremberg,
Germany, June 10-13, 1990), SCS, La Jolla, CA.

Oren, T.I. (1984.) Graphic Representation of Pseudocodes and Computer Programs:
A Unifyiag Technique and a Family of Documentation Programs. In: Proc.of
EdComp Conf 3 (First Educational Computing Conf. of IEEE Computer Society),

D.CRine (Ed.). San Jose, Ca., Oct. 18-20, 1983. IEEE Computer Society, New
York, pp. 81-89.

Oren, T.L, King, D.G., (1989.) ORFOR : Organized Representation of Fortran
Programs on a Sun Workstation. TR-89-16. Computer Science Department,

University of Ottawa, Ontario, Canada.

Perrone, G., Marieita, M., (1987.) Low -cost CASE : Tomorrow's Promise Energing
Today, COMPUTER.

Shuller, H.E., (1987.) Requirements for Comyuter Aided Software Engineering Tools.
CASE studies 1987 Conference.

Stinson, D.R. (1985.) An Introduction to the Design and Analysis of Algorithms.
Winnipeg, Manitoba, Canada, CBRC.

Sun Microsystems (1986a.) Windows and Window Based Tool: Beginner's Guide.
Sun Microsystems, Inc.,, Mountain View, California, U.S.A.

Sun Microsystems (1988). Programming Utilities and Libraries. Sun Microsystems,
Inc., Mountain View , California, U.S.A.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sun Microsystems (1986b.) Sun View Programmer's Guide. Sun Microsystems
Inc., Mountain View , California, U.S.A. ’

Venable, J.R., Duane, P.TRUX III., (1988.) An Approach for Tool Integration in a
CASE Environment. CASE studies 1988 Conference.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

