
www.manaraa.com

National Library Bib!ioth6que nationale
of Canada du Canada

Canadian T heses Service Service d es theses canadiennes

Ottawa, Canada
K1A0N4

NOTICE

The quaiitv of this microform is heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been m ade to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Som e pages may have indistinct print especially if the
original p ag es were typed with a poor tyoewriter ribbon or
if the university sen t us an inferior photocopy.

Reproduction ir. full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent am endm ents.

AVIS

La quality de cette microforme depend grandement de la
quality de la th6se soum ise au microfilmage. Nous avons
tout fait pour assurer une quality sup6rieure de reproduc­
tion.

S'il manque des pages, veuillez communiquer avec
I'universit6 qui a confdrd le grade.

La quality d'impression de certaines p ag es peut laisser a
d6sirer, surlout si les p ag es originates ont 6t6 dactylogra
phi6es & I'aide d'un ruban us6 ou si I’universit6 nous a lait
parvenir une photocopie de quality inf6rieure.

La reproduction, m&me partielle, de cette microforme esl
soum ise & la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et s e s am endem ents subs6quents.

NL-339 (r. 88/04) c Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

AN ALGORITHM DIRECTED COMPUTER AIDED
SOFTWARE ENGINEERING (CASE)

ENVIRONMENT FOR C

by

Messaouda Ouerd

A thesis submitted to the School of
Graduate Studies and Research in

partial fulfillment of the requirements
for the degree of Master of Computer Science

Department of Computer Science
University of Ottawa

Ottawa-Carleton Institute for Computer Science

Messaouda Ouerd, Ottawa, Canada, 1990

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A B National Library
* la of Canada

B ib tio th eq u e n a tio n a le
d u C a n a d a

Canadian Theses Service Service d e s theses canadiennes

Ottavra. Canada
KtAtWM

The author has granted an irrevocable non­
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per­
mission.

L’auteur a accorde une licence irrevocable et
non exclusive permettant a la Bibliotheque
nationale du Canada de reproduce, pr§ter,
distribuer ou vendre des copies de sa these
de quelque maniere et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
interessees.

L'auteur conserve la propriety du droit d’auteur
qui protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent etre
imprimes ou autrement reproduits sans son
autorisation.

ISBN 0 -3 1 5 -6 2 3 0 6 -3

Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UNIVERSITE D'OTTAWA
£ c o l e d e s Et u d e s s u p Er ie u r e s e t d e la r e c h e r c h e

UNIVERSITY OF OTTAWA
SCHOOL OF GRADUATE STUDIES AND RESEARCH

PERMISSION DE REPRODUCE F.T DE DISTRIBUER LA THESE - PERMISSION TO REPRODUCE AND DISTRIBUTE THE THESIS

NOM DE L'ALfTE UR**WAWE OF AUTHOR
OUERD, Mpus saoud a.

AORE3SE POSTALE-MA/UVQ AflDHfSS
37-265 Daly Avenue

Ottawa, Ontario KIN 6G4
OAAOE'DEGAfE ann£e d obtcntxw-y’dot Chanted

M.C.S. 1990
T1JRE DE t* TWESE-T/TUf OF THSSIS

AN ALGORITHM DIRECTED COMPUTER AIDED SOFTWARE ENGINEERING (CASE)---

ENVIRONMENT FOR C

L'AUTEUH PERMET, PAR LA PRESENTE, LA CONSULTATION ET LE PHET

DE CETTE THESE en c o n fo r m ite avec le s r Eg le m e n t s Etablis

PAR LE BIBLIOTHECAIRE EN CHEF DE LUNIVEHSITE D'OTTAWA. L'AUTEUR

AUTORISE AUSSI L'UNIVERSITB D'OTTAWA, SES SUCCESSEURS ET CES-

SIONNAIRES, A REPROD'JIRE CET EXEMPLAIRE PAR PHOTOGRAPHIE OU

PHOTOCOPIE POUR FINS DE PRET OU DE VENTE AU PRIX COUTANT AUX

BIBLIOTHEQUES OU AUX CHERCHEURS QUI EN FERONT LA DEMANDE.

LES DROITS DE PUBLICATION PAR TOUT AUTRE MOYEN ET POUR VENTE

AU PUBLIC DEMEURERONT LA PROPRIEt E DE L'AUTEUR DE LA THESE

sous reser ve d es rEg lem en ts de l u n iv e r s it E do ttaw a en

matiEre de public atio n de th e s e s .

THE AUTHOR HEREBY PERMITS THE CONSULTATION A N D THE LENDING O F

THIS THESIS PURSUANT TO THE REGULATIONS ESTABUSHED B Y THE

CHIEF U B R A R IA N OF THE UNIVERSITY O F OTTAWA. THE AUTHO R ALS O AU­

THORIZES THE UNIVERSITY O F OTTAWA. ITS SUCCESSO RS A N D ASSIG N­

EES, TO M AKE REPRO DUCTIO NS O F THIS CO PY B Y PHOTOGRAPHIC

M EANS O R BY PHOTOCOPYING AND TO LEND O R SELL S UCH REPRODUC­

TIONS AT COST TO LIBRARIES AN D TO SCHO LARS REQUESTING THEM.

THE RIGHT TO P U B U S H THE THESIS B Y OTHER MEANS A N D TO SELL IT TO

THE PUBLIC IS RESERVED TO THE AUTHOR, SUBJECT TO THE REGULA­

TIONS O F THE UNIVERSITY OF OTTAWA GOVERNING THE PUBLICATION O F

THESES.

{AITTEUR) (AUTHOR)

* NB: LE MASCULIN COUPAEND £GAL£MEUT LE FtMININ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UNIVERSITE D’OTTAWA
UNIVERSITY OF OTTAWA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UNIVERSITE DOTTAWA UNI VERSITY OF OTTAWA

£ c o l e d e s Et u d e s s u p Sr ie u r e s
ET DE LA RECHERCHE

SCHOOL OF GRADUATE STUDIES
AND RESEARCH

OUERD, Messaouda
AUTEUR DE LA THESE-ADTWCR O F THESIS

M.C.S.
o h a d e -o s o b e e

DEPARTMENT OF COMPUTER SCIENCE
FACULTS, E C O IE . OEPAHTEM ENT-FACUUY, S C H O O L DEPARTMENT

TITHE DE LA TH isE-nTLE OF THE THESIS

AN ALGORITHM DIRECTED COMPUTER AIDED
SOFTWARE ENGINEERING (CASE) ENVIRONMENT FOR C

T.I. Oren
C1RECTEUR OE LA THESE*THESIS SUPERVISOR

EXAMINATEURS DE LA Th£SE-W £S)S EXAMINERS

L.G.Birta

J . Pugh

U OOTCM OE L'ECOLE OES
E T D E IA R E C *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I hereby declare that I am the sole author of this thesis. I authorize University

of Ottawa to lend this thesis to other institutions or individuals for the purpose

of scholarly research.

Messaouda Ouerd

I further authorize University of Ottawa to reproduce this thesis by photocopying

or by other means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

Messaouda Ouerd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

The objectives of computer aided software engineering (CASE) systems are to improve

productivity during the software development piocess and the quality of software using

software engineering concepts via automation of the software development life cycle. This

will result in a reusable software and will decrease the cost and time of software development

and maintenance.

The main concern in this thesis is with describing the features of a particular software

understanding environment for C. An algorithm directed computer aided software engineering

environment for C language has been developed and implemented. The system has been

implemented on a Sun Workstation using the Sunview window interface. It provides

computer aided software engineering tools which :

1) Assist the user in developing structured algorithms for procedural languages

2) Automatically transform a structured algorithm into a corresponding program

3) Redocument the resulting C program (or any C program developed using any other

technique) in an organized representation.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGEMENTS

I am grateful to my supervisor, Dr. Tuncer 1. Oren, for all the guidance and
advice he has given to me throughout my graduate studies.

I wish to thank Douglas G. King for his useful comments and the stimulating
discussions.
I would like, also, to thank with gratitude the government of Algeria for the
financial support.

My husband Arab deserves the most thanks for his infinite encouragement, moral
support, patience, and understanding.

Finally, I thank my parents for encouraging me throughout the years of my studies.

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

ABSTRACT... iv

ACKNOWLEDGEMENTS.. v

Chapter 1. INTRODUCTION.. 1

Chapter 2. COMPUTER AIDED SOFTWARE ENGINEERING (CASE)....................5

Chapter 3. ALGORITHMS AND THEIR GRAPHICAL
REPRESENTATIONS... 15

Chapter 4. A PROPOSED GRAPHIC SCHEME FOR ALGORITHM-
DIRECTED SOFTWARE ENGINEERING... 34

Chapter 5. ALGORITHM EDITING ENVIRONMENT (ALC)...................................47

Chapter 6. ALGORITHM DIRECTED PROGRAMMING (CALC)......................... 62

Chapter 7. PROGRAM DOCUMENTATION (ORC).. 68

Chapter 8. CONCLUSION AND FURTHER RESEARCH....................................... 83

REFERENCES.. 85

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

DETAILED TABLE OF CONTENTS

ABSTRACT... iv

ACKNOWLEDGEMENTS... v

Chapter 1. INTRODUCTION

1.1 Aims and Structure of the Thesis.. 1

1.2 Architecture of the Algorithm Directed Computer Aided
Software Engineering Environment System.................... 2

Chapter 2. COMPUTER AIDED SOFTWARE ENGINEERING (CASE).................. 5

2.1 Background.. 5

2.1.1 Software Development Life Cycle..5

2.1.2 What is CASE ?.. 6

2.1.3 Examples of CASE Tools.. 7

2.1.4 The Need for Computer Aided Tools..7

2.1.5 The Need for Tool Integration... 8

2.2 Objectives of CASE Systems ...9

2.3 Parts of CASE.. 10

2.3.1 Computer Aided Software Forward Engineering............................ 11

2.3.2 Computer Aided Software Reverse Engineering............................. 11

2.3.3 Computer Aided Software Reengineering....................................... 12

Chapter 3. ALGORITHMS AND THEIR GRAPHICAL REPRESENTATIONS 15

3.1 Algorithms and their Main Features... 18

3.2 Some Graphical Representations Schemes for Algorithms....................... 18

3.2.1 Decomposition Diagrams.. 18

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.2.2 Dependency Diagrams..21

3.2.3 HIPO Diagrams.. 23

3.2.4 Wainier-Oir Diagrams... 25

3.2.5 Structured English..................... .. 28

3.2.6 Flowcharts.. 30

3.2.7 NS Charts... 32

Chapter 4. A PROPOSED GRAPHIC SCHEME FOR ALGORITHM DIRECTED
SOFTWARE ENGINEERING.. 34

4.1 Introduction.. 34

4.2 Graphic Structures... 38

4.2.1 Program and Program Modules.. 38

4.2.2 Sequential Block... 39

4.2.3 Selection Block... 40

4.2.4 Repetition Block.. 43

4.3 An Example of Algorithm Specification using the Graphic Scheme 45

Chapter 5. ALGORITHM EDITING ENVIRONMENT (ALC).................................47

5.1 Facilities provided.. 47

5.2 Architecture of the System..60

Chapter 6. ALGORITHM DIRECTED PROGRAMMING (CALC)........................... 62

6.1 Introduction.. 62

6.2 Use of Lex..65

6.3 Implementation of CALC...66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 7. PROGRAM DOCUMEN TATION (ORC)... 68

7.1 Introduction...68

7.2 Using O RC............................... 73

7.3 Implementation of O R C ..77

7.3.1 Data Flow Diagrams... 77

Chapter 8. CONCLUSION AND FURTHER RESEARCH... 83

REFERENCES... 85

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

Figure 1.1 Architecture of the Algorithm Directed CASE Environment....................... 4

Figure 2.1 The Relationships between the CASE Terms.. 10

Figure 2.2 Reengineering Cycle.. 13

Figure 3.1 Decomposition Diagram.. 20

Figure 3.2 Dependency Diagram... 22

Figure 3.3 The Visual Table of Contents.. 23

Figure 3.4 An Overview HIPO Diagram.. 24

Figure 3.5 A Detail HIPO Diagram.. 25

Figure 3.6 Wamier-Oir Diagram.. 25

Figure 3.7 Warnier-Orr Diagram for the Subscription System shown
in the HIPO Diagram... 27

Figure 3.8 A Pseudo-code Module to find the Minimum and Maximum
Elements in a Set... 29

Figure 3.9 Flowchart to find the Second Largest Value in a L ist............................. 31

Figure 3.10 NS Chart to find the Second Largest Value in a List.............................. 33

Figure 4.1 Aims of he Unified Graphic Technique 37

Figure 4.2 Main Program Block... 38

Figure 4.3 Function Block.. 38

Figure 4.4 Procedure Block .. 39

Figure 4.5 Sequential Block... 39

Figure 4.6 A Template of an Initial Block... 40

Figure 4.7 If-Then Block................................. 41

Figure 4.8 If-Then-Else Block... 41

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 4.9 If-Then-Elseif Block.. 42

Figure 4.10 Case Block... 43

Figure 4.11 While Block... 44

Figure 4.12 For Block .. 44

Figure 4.13 Do-While Block.. 44

Figure 4.14 An Example of an Algorithm Specification...46

Figure 5.1 First Screen of ALC...48

Figure 5.2 English version will be chosen.. 49

Figure 5.3 French version will be chosen... 49

Figure 5.4 Main Screen of ALC...50

Figure 5.5 Specification to insert a Program Block..51

Figure 5.6 Insertion of Program Block and Specification to insert
an If-Then-Elseif Block..52

Figure 5.7 Insertion of If-then-elseif Block and Specification to insert
a Case Block.. 53

Figure 5.8 insertion of Case Block and Specification to insert
a While Block... 54

Figure 5.9 Insertion of the While Block Specified in Figure 5 .855

Figure 5.10 Edit Operation Menu... 56

Figure 5.11 File Menus.. 57

Figure 5.12 Architecture of ALC.. 61

Figure 6.1 The Screen of CALC with ALC................ 63

Figure 6.2 The File Example is saved and its C version is displayed
on the CALC Window... 64

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.1 A C Program to find all Lines Matching a pattern..................................... 69

Figure 7.2 Organized Representation of the C program given in Figure 7.1............ 70

Figure 7.3 A C Program to count digits, white spaces and others............................... 71

Figure 7.4 Organized Representation of the C program given in Figure 7 .372

Figure 7.5 The ORC Screen... 73

Figure 7.6 The ORC’ed File of the input file specified in Figure 7 .5 74

Figure 7.7 The Meanings of the Conversion Parameters are shown for
an Example Block in the Output..76

Figure 7.8 Defaults and Valid Values used for the parameters of ORC...................... 76

Figure 7.9 ORC Document Generator ...78

Figure 7.10 Scan Source Code... 79

Figure 7.11 Generate Output.. 80

Figure 7.12 Generate Block Structures... 81

Figure 7.13 Transformation of Comment into Token... 82

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1

INTRODUCTION

1.1 AIMS AND STRUCTURE OF THE THESIS

Computer technology is developing faster than any technology, with gain in price / per­

formance. " Computer speed and power are now increasing at about thirty percent a year, but

software development productivity is increasing only four to seven percent a year." (Perrone,

Marietta, 1987, p. 104) The software systems of today represent new levels of power and

complexity that greatly exceed the capabilities of traditional development process. The task of

developing and maintaining new software is difficult to manage, making it the critical task of

new systems development, and an important issue in software engineering.

Computer aided software engineering tools are designed to automate most of the tasks in the

software engineering life cycle. Better analysis leads to more effective design, easier

programming, fewer testing errors, more success during implementation, and reduced

maintenance. Automation of the software engineering process improves productivity, reduces

costs, and results in higher quality software. Usually, the system's maintainers were not its

designers, so the need for clarification, enhanced understanding, and migration of existing

software is a real problem. The purpose of software understanding is to establish a basis upon

which to carry out software maintenance. The software understanding is a term for a family of

related concepts that are concerned with providing an enhanced perception of an existing

software product. These concepts are formulated in terms of different representations of the

software product at various levels of abstraction. Concepts such as reverse engineering,

redocumentation and restructuring have become identified with various types of review

carried out on an existing software product Reverse engineering enables information systems

to extract information from old applications and use them as the basis for maintaining those
l

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

applications. Reverse engineering does not involve changing the subject system. It is a

process of examination, not change or replication.

The algorithm directed computer aided software engineering system, outlined in this thesis,

is a forward and reverse engineering environment for C. The functionality provided by the

system has its origin in the generic problem of software understanding that has emerged within

the broad domain of software engineering. The system provides a subset of the features

required to perform software engineering (reverse engineering and forward engineering.)

Although the CASE tool described in this thesis has general applicability, its features are

particularly useful for the novice programmer; i.e., the system provides a very effective

pedagogical tool.

The thesis consists of four parts. The first part is Chapter 2 which provides a description of

computer aided software engineering (CASE) concepts and the need for CASE tools. The

second part is Chapter 3. This part gives some existing graphical representations of algo­

rithms. The third part consists of Chapter 4. In this part, a graphical scheme for algorithms is

presented and discussed in detail. The last part consists of Chapter 5 to Chapter 7. It provi­

des the full description of the implementation of the algorithm directed computer aided

software engineering system.

1.2 ARCHITECTURE OF THE ALGORITHM DIRECTED CASE

ENVIRONMENT SYSTEM

The algorithm directed CASE environment is a software environment in which algorithms and

C programs may be created, edited and documented in a structured way. Structural elements of

the C language are represented in the form of the graphic scheme developed by Oren(1984).

The system is implemented in C language, under UNIX SunOS 4.03 operating system, using

Sunview functions. A key component of the system is the editor, which enables structural

features of C to be manipulated in terms of their graphic scheme " box” representation.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Another key feature of the system is the transformation of the algorithm into its corresponding

procedural C program which is displayed in a parallel window to the algorithm window.

As depicted in Figure 1.1, the elements of the system environment consist of the following

main components.

ALgorithm Editor (ALC):

The algorithm editor automates the process of editing structured algorithms. Templates can be

selected from a menu of templates. They are viewed through the menu window and inserted in

the text window. The system (ALC) provides a comprehensive set of services for manipulating

templates. Other functions that can be called from the menu window include removing

templates (clear the text window), saving a block of templates as a file in the algorithm text and

print any algorithm already edited.

Object Code Editor (CALC):

The object code editor assists a user in transforming an algorithm into corresponding code.

The output from CALC is functional and test case source code that can be verified and

compiled into machine code. Checking, detecting a number of bugs and obscurities is part of

lint (program verifier for C) process.

Organized Representation of C Programs (O RC):

ORC, organized representation of C programs is a software tool to document correct C

programs. The documentation which is automatically generated by ORC is a structured

flowchart of the C programs. Text window is used to display documented files. Menu

window allows the users to choose the parameters for drawing the outputs for the user taste.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout perm

ission.

USER INTERFACE

ORCALC CALC
Organized Representation

of C programs
Algorithm Editor Object Code Editor

Text
Window

Text
Window

Text
Window

Object
Text
Files

\C o d e
Generator

Defaults
Window

Aleori-

Text

Figure 1.1 Architecture of the Algorithm Directed CASE Environment

4

www.manaraa.com

Chapter 2

COMPUTER AIDED SOFTWARE ENGINEERING (CASE)

2.1 BACKGROUND

2.1.1 SOFTWARE DEVELOPMENT LIFE CYCLE

Software development follows a planned life cycle which can be generalized with the following

six phases: analysis, design, coding, testing, implementation, and maintenance.

In the analysis phase, the requirements (specification of the problem being solved, including

objectives, constraints, and business rules) are determined and formally documented. In this

phase, alternative solutions satisfying the constraints are tested. A functional specification

and a logical model for the best or a feasible solution are generated.

In the design phase, the specified requirements are used to develop the detailed specification

for a selected solution, including diagrams relating all programs, subroutines and data flow.

The software design is the product of this phase.

The coding or programming phase uses the specification of the solution. Listings and

operational manuals will result

In the testing phase, the software is verified that it satisfies all the requirements already men­

tioned in the analysis phase.

The implementation phase corresponds to the installing of the software. In this phase, the

software, operational manuals, and all required documentation are delivered to the customer.

The result of the implementation stage is the final system.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Maintenance phase which includes repair, modification and enhancement of the software for its

remaining life is the longest phase of the software development life cycle, since the

remaining life of the software is many times the time required to produce tire software.

2,1.2 WHAT IS CASE?

CASE (Computer Aided Software Engineering) includes :

• Software automation

• Combination of tools and methods

• Repackaging of structured concepts

• Redefinition of software environment: tools, methods, hardware, management

CASE (Computer Aided Software Engineering) refers to the automation of a specific

software engineering task or to a complete environment that automates most of the tasks in the

software engineering life cycle. The goal of CASE technology is to solve the problems

resulting from systems development through automation from analysis of the system to the

maintenance.

As expressed by Chikofsky and Rubenstein (1988, p. 11) " CASE lets systems analysts

document and model an information system from its initial user requirements through design

and implementation and lets them apply tests for consistency, compactness, and conformance

to standards".

A CASE tool is any software tool which can provide automated assistance in the analysis,

design, coding, and maintenance of software systems.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.1.3 EXAMPLES OF CASE TOOLS

• Specification languages and diagramming techniques are examples of Analysis / Design

tools.

• Code generators and testing tools arc examples of Implementation tools.

• Reverse engineering tools, reengineering tools, redocumentation tools, and program

analyzers are examples of maintenance tools.

2.1.4 THE NEED FOR COMPUTER AIDED TOOLS

” The rapid pace at which hardware innovations arc announced, particularly in the area of

microprocessor technology, now well exceeds the capabilities of our software development

technology . . . An entire generation of processor hardware technology has arrived and been

superseded without any software to support it reaching the marketplace". (Chikofsky and

Rubenstein, 1988, p. 11-12).

The factors which require for computer assistance in the process of software development, as

discussed by Shuler (1987, p.7-8) are complexity, consistency, diagnostics and prompting,

efficiency, and maintainability of documentation.

Complexity: The development of even a relatively small system requires the consideration of

enormous amounts of detail which is often impractical to maintain and evaluate without

automated assistance.

Consistency: CASE tools provide a framework for a consistent application of the selected

approach across a large number of project participants.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Diagnostics and Prompting : CASE tools provide analysts with diagnostics to improve their

work and prompting to help assure their work is consistent and complete.

Efficiency : Computer assistance increases the analyst's efficiency by automating some of the

more routine aspects of the structured analysis and design process.

Maintainability of Documentation : Since the system's documentation is prepared by automated

techniques, it can be more easily maintained than manually prepared documentation.

2.1.5 THE NEED FOR TOOL INTEGRATION

The tools in a CASE environment should be integrated so that information entered using one

tool should become available in all other tools that need it, regardless of their different

views or media (e.g., graphic or text). Three potential advantages to this are apparent:

* First, the efficiency and productivity of CASE environment users will be improved. Tool

users should not have to re-enter information already captured at an earlier phase with a diffe­

rent tool.

* Second, eliminating redundant user input yields improved consistency between the data

stored by different tools with resulting reduction in errors.

* Third, view translation could be provided between tools, without requiring any user input

other than selecting the tool with the desired view. This would allow the user to select the tool

with the most appropriate view.

The method for integrating tools has long been known to be a problem of importance.

Typically, this is thought to be best addressed through a central (common) database for all

tools in the environment. A CASE database can be viewed as having a scheme (both logical

and physical). So, the various tools needed in a CASE environment may have different

views of the object's information system (IS). These views can each be considered to be an IS

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

model. When two IS model's views are logically the same (i.e., they consider the exact same

aspects or qualitities of the IS to be relevant and structure them the same way), we can say

that the difference between them is their physical form. For example, an algorithm (a certain

semantics) can be represented using pseudo-code in different languages (for example French

and English). Representing the algorithm in those languages are two different syntaxes for

expressing the same thing (an algorithm). The semantics of the algorithm is the same, only its

representation is different

2.2 OBJECTIVES OF CASE SYSTEMS

CASE technology changes the way we build software systems by automation of the software

engineering process which improves productivity, minimizes the total cost of the system, and

eliminates many software development and maintenance tasks.

The objectives of CASE systems (McClure, 1988a, p. E l) are :

• Automate software development

• Visual / graphical programming

• Interactive development style

• Minimize the total cost of the system

• Automate generation of documentation

• Automate generation of code

• Automate error checking

• Automate project management

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Improve software quality

• Improve productivity

• Speed up software development

• Formalize software documentation

• Standardize software documentation

• Promote greater control of software development

• Integrate development steps and tools

• Promote software reusability

•. Improve software portability

2.3 PARTS OF CASE

The types of CASE can be grouped in to :

• Computer Aided Software Forward Engineering

• Computer Aided Software Reverse Engineering

• Computer Aided Software Reengineering

The relationships between these terms is explained in Figure 2.1 (Chikofsky and Cross, 1990,

p. 14).

R equ irem en ts
(constrain ts,
obrectives.

business rules)
D e s ig n Im plem enta tion

Forward
engineering

Forward
engineering _

Reverse
engineering

Reverse
engineering

Oesign
recovery “

. Design
— recovery

C
R eengineering

(renovation)
Reengineering
(renovation)

R estructuring R e s tru c tu rin g
R edocum entation,

restructuring

Figure 2.1 The relationships between the CASE terms

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.3.1 COMPUTER AIDED SOFTWARE FORWARD ENGINEERING

" Forward Engineering is the traditional process of moving from high level abstractions and

logical, implementation independent designs to the physical implementation of a system."

(Chikofsky and Cross, 1990, p. 1). Forward engineering is the process of progressing

from requirements (specification of the problem, constraints, and business rules) to the

design then to the implementation. Forward engineering translates the "what"

specification that defines an application into the "how" of its physical representation.

2.3.2 COMPUTER AIDED SOFTWARE REVERSE ENGINEERING

Reverse engineering " is the process of analyzing a subject system to :

- Identify the system’s components and their interrelationships, and

- Create a representation of the system in another form or at a higher level of abstraction."

(Chikofsky and Cross, 1990, p. 1).

In software systems, the approaches, or the concepts of reverse engineering apply to gain a

basic understanding of a system and its structure. This is very important to obtain a sufficient

design level understanding to aid maintenance and support. Reverse engineering tools can help

the system’s maintainers (who usually are not the designers) to examine and get information

about the software product so they can make appropriate changes if needed, or to adapt the

product to a different environment

Beyond increasing comprehensibility of the system the major functions of software reverse

engineering include the following functions:

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Generation of alternate representation (graphical and non-graphical) which refers to

redocumentation.

• Extracting existing knowledge from a program, and recovering lost knowledge i.e.,

software elucidation.

• Transformation and recasting of code, data, design / algorithm or requirement; i.e.,

software restructuring.

2.3.3 COMPUTER AIDED SOFTWARE REENGINEERING

" Reengineering, also known as both renovation and reclamation, is the examination and

alteration of a subject system to reconstitute it in a new form and the subsequent

implementation of the new form." (Chikofsky and Cross, 1990, p. 1). Reengineering

involves or includes forward and reverse engineering. In fact, to achieve an abstract

description of the system we need to use reverse engineering and to modify any mechanism,

we need also forward engineering.

Figure 2.2 (Bachman, 1988, p. v55) shows the chart of reengineering cycle. It provides an

architectural view of CASE with forward and reverse engineering.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Level Reverse Engineering Forward Engineering

Requirements
b

Business Analyst H

▲ *

Specification

T ... T .
Data Analyst f l

System Analyst f l

Implementation
programmer b

DBA f l

lh h p h m I

Operation

Figure 2.2 Reengineering Cycle (Bachman, 1988, P- v55)

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In Figure 2.2 Forward engineering starts at the right top and progress from the most con­

ceptual level (requirements, design) to the most physical level (machine instruction) at the

bottom.

Across the horizontal axis, reverse engineering starts at the left bottom with the definition of

existing applications and raises the applications to successively higher levels of abstractions.

The reengineering cycle described reflects the continuity of applications systems and their

revisions over time. Each time, when the design objects created by the reverse engineering

steps are validated and become the revised design objects, they are used in the forward

engineering process. As shown in Figure 2.2, new applications become existing applications.

This ensure the long life of a system.

" CASE products based on this CASE reengineering life cycle will have tremendous impact

on the evolution of IS practices and on the businesses that depend on computer aided applica­

tion systems for success. Three year projects will become three months projects. Being able

to do what is needed today frees IS to make changes as the business environment evolves,

rather than trying to predict three years ahead. A half dozen short term changes can offer a

business more than one grand leap, which is often misdirected and seldom well executed".

(Bachman, 1988, p. V57)

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3

ALGORITHMS AND THEIR GRAPHICAL REPRESENTATIONS

3.1 ALGORITHMS AND THEIR MAIN FEATURES

A computer program can be viewed as a complex object that contains a large amount of detailed

information. This detailed information is necessary even if it obscures the structure of the

program. In order to write a program or to understand a program, a guide to its organization

and purpose is needed, Thus, the first step is to express our solution in an abstract way at

first, omitting the details.

There are several programming paradigms. In the procedural approach, a problem can be

solved by applying a special set of instructions. Furthermore, the order of these instructions is

known a priori. The method being used to solve the problem is embodied in the algorithm.

The algorithm is an abstraction of the actual computer program. As such, it can be studied

without referring to any particular computer, programming language, compiler, etc. When we

design an algorithm to solve a particular problem, we want to know how much resources, i.e.

time (the number of steps required until the algorithm terminates) and space (the amount of

memory required to implement the algorithm) an implementation will consume. Mathematical

method? are used to predict the time and space needed by an algorithm, and this does not

require implementation of the algorithm. This is important for several reasons. The most

important is that we can save work by not having to implement algorithms in order to test their

suitability.

The meaning for an algorithm is quite similar to that of recipe, process, method, technique ,

procedure, or routine (Knuth, 1973, p.l.) An algorithm is a finite set of rules which

gives a sequence of operations for solving a specific problem. An algorithm has five

important features (Knuth, 1973, p.2.)

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

These features will be highlighted using the Euclid's algorithm for finding the greatest

common divisor of two positive integers.

Algorithm E (Euclid's algorithm) (Knuth, 1973, p.2.) Given two positive integers m

and n , find their greatest common divisor, i.e., the largest positive integer which evenly

divides both m and n .

E l. [Find remainder.] Divide m by n and let r be the remainder.

(We will have 0 <! r < n).

E2. [Is it zero ?] If r - 0, the algorithm terminates ; n is the answer.

E3. [Interchange.] Set m <—n, n <—r , and go back to step E l.

The five features of an algorithm are clarified below:

1) Finiteness. An algorithm must always terminate after a finite number of steps. It is

composed of steps. Each step must be well defined; that we can program a machine to cany

it o u t, if necessary. Algorithm E satisfies this condition, because after step E l the value of r

is less than n , so if r = 0, the value of n decreases the next time that step E l is

encountered. A decreasing sequence of positive integers must eventually terminate, so step El

executed only a finite number of times for any given original value of n .

"A procedure which has all of the characteristics of an algorithm except that it possibly lacks

fmiteness may be called a computational method. Besides his algorithm for the greatest

common divisor of two integers, Euclid also gave a geometrical construction that is essentially

equivalent to Algorithm E, except it is a procedure for obtaining the greatest common

measure of the lengths of two line segments; this is a computational method that does not

terminate if the given lengths are incommensurate." (Knuth, 1973, p.5)

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Another example of computational procedure is to print positive integers. (Grogono and

Nelson, 1982, p.83). This procedure is not required to terminate. Its steps are :

1. Set N to zero

2. set N to N+l

3. Print N and go back to step 2 .

2) Definiteness. In Algorithm E, the criterion of definiteness as applied to step El means

that we are supposed to understand exactly what it means to divide m by n and what the
I

remainder is, and make sure that the values of m and n are always positive integers

whenever step E l is to be executed.

3) Effectiveness. An algorithm is expected to be effective. This means that all of the

operations to be performed in the algorithm must be sufficiently basic that they can be done

in a finite length of time. Algorithm E uses only the operations of dividing one positive

integer by another, testing if an integer is zero, and setting the value of one variable equal to the

value of another.

4) Input. An algorithm has zero or more inputs, which are taken from specified sets of

objects. In Algorithm E, the values of the input data for which the algorithm is valid are stated:

m and n must be positive, nonzero integers.

5) Output. An algorithm has one or more outputs, i.e., quantities which have a specified

relation to the inputs. The sequence of control is well-defined and it is always clear which is

the next step to be executed and when the final step is executed, we have obtained the required

result. Algorithm E has one output, namely n instep E2, which is the greatest common

divisor of the two inputs.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

An algorithm is therefore, a set of rules which gives a sequence of operations for solving a

specific problem and has five features which are : Finiteness, definiteness, effectiveness,

input, and output

3.2 SOME GRAPHICAL REPRESENTATION SCHEMES FOR

ALGORITHMS

We present several graphical techniques for representing and communicating algorithms. The

idea behind the " pictures" we will draw is that the alternative sequence of processing steps

will be better distinguished graphically, and the " shape " or structure of the algorithm better

displayed Given an appropriate diagramming technique, it is much easier to describe complex

activities and procedures in diagrams than in text. A picture can be much better than a thousand

words because it is concise, precise, and clear. There is a new and very important reason for

diagramming. The job of systems analysts and builders is evolving from a pencil and paper

activity to an activity of computer aided design. This change will improve the productivity of

systems builders and increase the quality of the systems they build

In the sequel the following graphical representation schemes are discussed: Decomposition

diagrams, dependency diagrams, hipo diagrams, Wamier Orr diagrams, strucured English,

flowcharts, and NS charts.

3.2.1 DECOMPOSITION DIAGRAMS

Decomposition diagrams are used to show organization structures, system structures, program

structures, and report structures. High activities are decomposed into lower level activities

showing more detail. This top down structuring makes complex organizations or processes

easier to comprehend. Decomposition diagrams are a basic tool for structured analysis and

design. Most decomposition diagrams are simple tree structures.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The term activity means function, process, or procedure. Functions refer to major areas

of activity in a corporation, engineering, production, research, and distribution.

The term process refers to an activity without describing the mechanisms by which it is

accomplished. The process does not indicate the precise method by which the results are

accomplished.

Procedure refers to a specific method of accomplishing the process ; It refers to the design

carried out by a system analyst The procedure may refer to document data flow, screen

interaction, and program steps. Figure 3.1 (Martin and McClure, 1985, p. 369) is an

example of decomposition diagram.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

POLICY
SERVICING

SELL TO A
CUSTOMER

SERVICE fl
POLICY

PROCESS
: fl CLAIM :

TEPMNATE
fl POLICY

ARRFNGE
L Bflf-K. MPfCATE

CIWT ACT
CUSTOER

SJSDCtR
T>E POLICY

APPORTICM
REMITTANCE CALCULATE

' VALLE
ACCEPT
PREMIUM ADVISE .

CUSTWER :
ACCEPT LOAN

INTERESTA DECIDE ON ^
X no. or un its 1

adjust
POLICY

PAY
I CUSTJERcalculate :;

PRENlLM

EfCORSE
POLICY CLOSE

LAPSED
POLICY

- J r t'CDICAL
e x r iin a t ic n

ASSIST
POLICY

CLAW6ACX 1
v BROKERAGE !J- a —I REVISE

PREMIUM
ADJUST
POLICY :OFFER

LOAN :

. DRAW I f
CONtRACT

MATURE ■OFFER
POLICY POLICY

CRAW LP
CONTRACT

PAY POLICY
HOLCCRALLOCATE

SCMJS
_ (fov isc ^

REPRESENTATIVE

PALETTE

A ctivity: ^

Sequence: V ^

Optional:-----• —

Mutually e i elusive?

One-with-many: ^ / K - c

Figure 3.1 Decomposition Diagram (Martin and McClure, 1985, p. 369)

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.2.2 DEPENDENCY DIAGRAMS

In the decomposition diagram, the activities form a hierarchy, but we don’t known if certain

activities are dependent on others or no t A dependency diagram has blocks showing activities

and arrows between blocks showing that one activity is dependent on another. A time

dependency exists between two activities if one cannot be carried out until the other has been

completed. The arrows in a dependency diagram are often marked with data which are

created by one activity and used by another.

There are three types of dependencies which can apply to functions, processes, or procedures

(Martin and McClure, 1985, p. 81). These are resource, data, and constraints dependencies.

11 Resource dependency : One activity (A) produces or modifies some resource ; Activity

(B) uses this resource, for example DELIVER ORDER cannot occur before PICK GOODS,

because there would be nothing to deliver.

21 Data dependency : Activity (A) creates or updates some data and activity (B) uses that

data, for example CREATE BACKORDER cannot occur until ACCEPT ORDER has occurred

because CREATE BACKORDER needs certain data from the ACCESS ORDER process.

31 Constraint dependency : If an execution of some step in activity (B) depends on a

constraint that was set in activity (A), or the testing of a condition that was set in activity (A).

As shown in Figure 3.2 (Martin and McClure, 1985, p.90), dependency

diagrams can be made more generally useful by including additional constructs which are :

Optionality, cardinality, branching, mutual exclusivity, loops, parallelism, events, sequence,

and flow. Details are shown in Figure 3.2.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Assessed . .
stock t f

FINANCIAL
YEAR
END

tr stock M elioration > I tASSESS
STOCK
QUALITY

If quality is acceptable

Quantity
i COUNT:: : _ counted : fsof5>er

STOCK * s
If quantity: : . : j

Quantity
counted N f

counted <
reorder level

COMPARE
WITH STOCK

RECORDS

Assessed

iV'ASSESS
:dem AND

' . >
If quantity counted •
* quantity recorded

I f quantity counted
f 7 years average sales

Assessed
demand '

Stock
stock \ t \ f deterioration

Discrepancy

ADJUST
VALUE

PALETTE

Condition:

Figure 3.2 Dependency Diagram (Martin and McClure, 1985, p.90)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.2.3 HIPO DIAGRAMS

A HIPO (Hierarchical Input - Process - Output) diagram is a diagramming technique which

can give a general or detailed view of a system or program using three types of diagrams

(Martin and McClure, 1985, p.131). These a re : Visual table of contents, overview

and detail HIPO diagrams.

11 A visual table of contents is a tree-structured decomposition diagram. It shows the

overall functional components of a system or program. It does not give any control informa­

tion, nor does it describe any data components. An example of a visual table o f contents for

the subscription system (Martin and McClure, 1985, p. 132) is shown in Figure 3.3.

The purpose of this system is to process three types of subscription transactions: new

subscription, renewals, and cancellations.

PROCESS
SUBSCRIPTION

VO

CREATE
AUDIT
RECORD

3.1.3

PROCESS
VALID
ITEM

3.0

ADD
NEW
RECORD

3.1.1

GET VALID
SUB ITEM

2.0

CREATE
BILL

3.1.2

READ SUB
ITEM

2.1

VALIDATE
SUB ITEM

2.2

PROCESS
RENEWAL

PROCESS
NEW
SUBSCRIPTION

3.1

PROCESS
CANCELLATION

3.2

Figure 3.3 The Visual Table of Contents (Martin and McClure, 1985, p. 132)

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In the visual table of contents, each box can represent a system, subsystem, program, or

program module. Its purpose is to show the overall functional components.

21 An overview HIPO diagram, gives general information about the inputs, process

steps, and outputs of one particular functional components in a system (program).

Figure 3.4 (Martin and McClure, 1985, p. 132) shows the overview HIPO diagram for

the PROCESS SUBSCRIPTION function in the subscription system.

Subscription S y stem
Diagram 1.0 S u b scrip tio n

— R eference num ber from Table o f C o n ten ts HIPO d iagram

INPUT

S u b scrip tion Item s

C u sto m er File

PROCESS

For all subscrip tion
transaction item s:

1. Get valid su b item

2. If new sub , p ro cess n ew su b

3. If renewal, p ro cess renew al

4. If cancellation, p ro c e ss
cancellation

OUTPUT

U p dated M aster Fite

Figure 3.4 An Overview HIPO Diagram (Martin and McClure, 1985, p. 132)

31 A detail HIPO diagram provides the information necessary to understand the inputs,

processing steps, and outputs for a functional component It represent the program design and

can easily be transformed into program code. Figure 3.5 (Martin and McClure, 1985, p.133)

is the detail diagram for the VALIDATE NEW SUB function in the subscription system.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Subscription S y ttom
p)*(jr»m 2.2.2 V«lid»te N«w S u b

INPUT

NEW-SUB-IN

NEW-NAME
n e w -s t r

NEW-CITY
NEW-ST
NEW-Z1P
n e w -p m t

NEW-SUB-IN

NEW-TERMS

VAUD-TERMS

VALID TERMS TABLE
.

PROCESS

1. R»**t v rror flag*.

2. V alidate n im t , (trea t, zip,
an d paym ant.

a. if error*.
»o: ftag.

3. V alidate term*,

If errors,
sa t flag.

2 .2 .2.1

OUTPUT

VAL10ITY-FLAGS

_N, VALIO/INVALID
INDICATORS

V
Reference nu m b er referring to m ore
detailed HIPO d iagram w hich
expand* step 3

Figure 3.5 A Detail HIPO Diagram (Martin and McClure, 1985, p. 133)

HIPO diagramming technique can describe a system or program at any varying degrees of

detail during the functional decomposition process. Detail HIPO diagrams relate data to

processing steps. HIPO diagrams have no symbols for representing detailed program

structures such as conditions, case structures, and loops.

3.2.4 W ARNIER ORR DIAGRAMS

Wamier-Orr (Jean Dominique Wamier and Ken O rr) diagrams aid the design o f well

structured programs. These diagrams use brackets to show the hierarchical decomposition of

activities or data. This decomposition can represent a high level overview of a program

structure or detailed program logic. It forms the basis o f the Wamier-Orr design

methodology.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Wamier-Orr diagram represent graphically the hierarchical structure of a program, a

system, or a data structure. It draws the hierarchical structure horizontally across the page

with brackets.

I) Representation of data Figure 3.6 (Martin and McClure, 1985, p. 139) is an example o f a

Wamier Orr diagram of an employee file.

FILE HEADER

EMPLOYEE
FILE

EMPLOYEE
RECORD
O.E)

FILE BODY ■<

"O .E i” m ean s th a t th e re are

r STREET
’e m p l o y e e n a m e

CITY
ADDRESS <

STATE
SOCIAL SECURITY
NUMBER ZIP CODE

PAY RATE "s a l a r y

EMPLOYEE TYPE „ © ■ * — S

HOURLY

1 to E em ployee reco rd s in
the em ployee file

Daia occur in
the top-dow n
seq u en ce

" © " m ea n s
e ith e r o n e
o r th e o th e r

Figure 3.6 Wamier-Orr Diagram of an Employee File (Martin and

McClure, 1985, p . 139)

26
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• The diagram is read from left to right and from top to bottom within a bracket.

• The brackets enclose logically related items and separate each hierarchical level.

• The items (with meaningful nam e) are listed vertically.

21 Representation of Program Structure Figure 3.7 (Martin and McClure, 1983, p. 141)

shows the Wamier-Orr diagram representing a program structure.

BEGIN
BEGIN

READ SUB ITEM
GET VALID
SUB ITEM "S VALIDATE SUB ITEM BEGIN

PROCESS
SUBSCRIPTION *

END ADD NEW RECORO

BEGIN

PROCESS
VALID ITEM

-< DETERMINE ITEM TYPE

"(SI" m ean * th a t
th is is re p ea te d
S lim e*

END
PROCESS NEW SUBSCRIPTION < CREATE BILL
(0,11?2

CREATE AUDIT RECORD
(0.1)73 \

PROCESS RENEWAL
(0.1)74

END

71 en d o f su b scrip tio n transaction* - tru e
72 item ty p e - n ew subscrip tion
73 item ty p e - cancellation subscription
74 item type - renew al subscription

" © " m ean s th a t The item s are executed
o n e of th ese th ree in the to p -d o w n sequence
blocks is ex ecu ted show n

Figure 3.7 Wamier-Orr Diagram few the Subscription System

shown in the HIPO Diagram (Martin and McClure,

1985, p.141)

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• When representing a program structure, each level in a Wamier -Orr diagram has three

components : BEGIN, process step, and END.

• Each level is enclosed in vertical brackets, and the hierarchical structure is read from left to

right

• In a Wamier-Orr diagram, to indicate sequence the processing steps are included at the same

hierarchical level and arc written in a vertical column one after another.

Wamier-Orr diagrams are easily translated into program code because of BEGIN -END.

The Wamier-Orr diagrams provide good documentation for data structures. They do not show

conditional logic as well as other details of algorithms.

3.2.5 STRUCTURED ENGLISH

Structured English is a diagramming technique to represent program structures. The figures or

the specifications have several important properties :

• They are written in such a way that a user could understand them.

• They are hierarchically structured and use indentation to reveal structures.

• They have a similar code that will be used to implement them.

• Comments that will not be translated into program code are marked with asterisks.

• The detailed program structures (Sequence, condition, repetition, and case) are well

defined.

• The sequence structure is a list of items where each item is placed on a separate line.

If the item requires more than one line, continuation lines are indented.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Blocks of instructions are grouped and give a meaningful name which describes their

function.

• The structures are indented to show the logical hierarchy.

• Parentheses are used to avoid AND / OR and other ambiguities.

• Keywords are written in bold font

Figure 3.8 (Dyck, Lawson and Smith, 1979, p.221) gives an example of algorithm using

Structured English.

module minmax (Import*: SET, num; export*: small, large)
’ Module to find the smallest and largest entries in a given SET of length num.
* Variables used:
* SET * the given set of numbers
* num - length ol the set
* small - smallest enlry in the set
* large - largesl entry in the sel
* Initialize the smallest and largest as the first entry.
small — set,
large — set,

* Search the rest of the set for better values.
I — 2
whll* I < num do

if set, < small than

£ small — set,

•Is*
If set, > large then

1 — 1 + 1

•nd module

Figure 3.8 A Pseudo-code Module to find the Minimum and Maximum

Elements in a Set (Dyck, Lawson and Smith, 1979, p. 221)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.2.6 FLOWCHARTS

Flowcharts were one of the earliest forms of diagramming method. Generally, the flowchart is

not considered to be a structured diagramming technique. Its utility is limited to small

programs. For larger programs, flowcharts become very cumbersome to use. They can

show detailed logic (in an unstructured fashion) but do not give a useful overview of the

system functions. The process figure in a flowchart is a rectangular box, the decision figure

is a diamond, and the looping figure is formed by drawing a line connecting the figures of the

loop into a circle.

Flowcharts do not represent structured design. They encourage GOTO's and nonstruc­

tured code which is difficult to maintain. Flowcharts are natural, easy to leam to use, and both

easy to draw and to trace. They are too flexible to help us in consistently picturing similar logic

process. Unfortunately, flowcharts are not always successful in helping us understand the

algorithm being represented. Their major weakness is that they take up too much room. The

best way to maintain comprehensibility when moving from page to page is to decompose

instead of continuing. However, even if we try to partition a large flowchart, we still may have

as many ways of decomposing the logic as we have people trying to represent it.

Figure 3.9 (Mitchell, 1984, p. 107) is an example of a flowchart showing the steps to be

performed in determining the second largest value in a list

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

START

max •♦-first item
in the list

no second
largest in a one
element

list
NO STOPitem ?

YES

YES NO
item

let second ♦ —
max item

let max ■*
this item

anotherYES NO-----ft.consu

f this itei
greater th
max item

STOPYES

/ this itemS,
greater than

Second
item

YES

NO

Figure 3.9 Flowchart to Find the Largest Value in a List
(Mitchell, 1984, p.107)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.2.7 NS CHARTS

Nassi and Shneiderman set out to replace the traditional flowchart with a chart that offers a

structured, hierarchical view of program logic. Nassi-Shneiderman charts are used for

detailed program design and documentation. Nassi-Shneiderman charts (NS charts)

represent program structures that have one entry point and one exit point and are composed of

the control constructs of sequence, selection and repetition. Whereas it is difficult to show

nesting and recursion with a traditional flowchart, it is easy with an NS chart. Also, it is easy

to convert an NS chart to structured code. However, this conversion is not unique.

The NS chart is a diagramming technique used primarily for detail program design. It is

a poor tool for showing the high level hierarchical control structure for a program. The NS

diagram technique is only a procedural design tool and cannot be used to design data

structures. In addition, although it is easy to read, it is not always easy to draw.

NS charts are motivated by a desire for compactness, a desire for convenient decom-

posability, and a concern for focusing attention on looping. Flowcharts are not compact due to

the space between figures. The construction of flowcharts permits any kind of looping at any

time; hence, the designer is not forced to carefully plan his loops. NS diagrams force the

preplanning of all loops because instead of the connecting line of the flowchart, NS diagrams

provide a looping figure.

The process figure in NS diagrams is the rectangle, the same as in flowchart. The decision

figure is a rectangle also, but is divided into three subrectangles. The looping figure is a

rectangle. Figure 3.10 (Mitchell, 1984, p.l 17) shows the NS diagram for the problem

of finding the second largest item in a list.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LE V E L 1

INITIALIZE MAX AND SECOND

DO WHILE ITEMS REMAIN

CONSIDER NEXT ITEM.

IS IT GREATER THAN MAX ITEM ? / N

LET MAX ITEM BE
DESIGNATED SECOND

V IS IT GREATER THAN /
Y \ SECOND ITEM ?

LET THIS BE
DESIGNATED

SECOND
LET THIS ITEM BE
DESIGNATED MAX

*

LEVEL 2

INITIALIZE MAX AND SECOND

LET MAX «4- FIRST ITEM IN LIST

IS THERE a SECOND ITEM IN THE LIST ? y ^ N
\ IS THE SECOND ITEM GREATER /

Y \ THAN MAX ITEM? y ^ N
THERE IS NO SECOND

LARGEST ITEM IN A

ONE ITEM LIST.

1----

LET SECOND DESIGNATE
THE MAX ITEM LET SECOND <4-

SECOND ITEM IN
LIST

LET MAX <4— THE 2ND
ITEM IN THE LIST

Figure 3.10 NS Diagram for finding the Second Largest Item in a List
(Mitchell, 1984, p.117)

(Note: the details of the block identified by a * at level one are
given in another block at level two)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4

A PROPOSED GRAPHIC SCHEME FOR ALGORITHM-DIRECTED

SOFTWARE ENGINEERING

4.1 INTRODUCTION

Clear diagrams play an essential part in designing complex systems and developing programs.

When a number of people work on a system or program, the diagrams are an important

communication tool. A formal diagramming technique is needed to enable the developers to

interchange ideas and to make their separate components fit together with precision.

Structured diagramming techniques help developers deal with the large volume of details

generated during the program development process. When systems are modified, clear

diagrams are an essential aid to maintenance. They make it possible for a new team to

understand how the programs work and to design changes.

The introduction of structured techniques into computing was a major step forward.

The early structured techniques were pencil and paper methods. Today these techniques

need automation. Designs should be created with the aid of a computer. The design should be

such a form that it leads to automated code generation. Some diagramming techniques are

more appropriate than others for automation. Automation of diagramming should lead to

automated checking of specification and automatic generation of program code. Many of the

diagramming techniques of the past are not a sound basis for computerized design. They are

too casual, unstructured, and cannot represent some of the necessary constructs.

An unified graphic technique to represent algorithms and computer programs was proposed by

Oren(1984). The technique facilitates conception and design of algorithms and their

translation into computer programs. The technique has the structure preserving capability,

i.e., when an algorithm is translated into a program, there exists a one to one correspondence

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of the logical structures of the algorithm and the program. Similarly, computerized docu­

mentation of a program reveals the identical logical structures of the original algorithm.

• An algorithm specified according to the unified graphic notation can be implemented in

one way only. The logical structure of the program is identical to the logical structure of

the algorithm.

• The basic building blocks, i.e ., sequential, selection and repetitive blocks, used in the

graphic scheme are easily understood.

• The logical structure of the algorithm can be perceived easily by using the graphic

technique.

The graphic scheme can be used for several purposes :

• To conceive, graphically edit, and refine structured algorithms.

• To increase the chances of detection and elimination of logical errors in the algorithms

and the programs.

• To generate computerized documentation of programs written in structured languages.

• To develop software tools to assist a programmer in the design of structured algorithms

and in their translation into structured programs.

The unified technique allows graphic representation and stepwise refinement of algorithms

expressed as pseudocodes and computer programs, as well as computerized generation of

program documentation. Therefore the technique can enhance the activities involving

algorithm design, programming and documentation of computer programs.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The unified graphic scheme has the following important features :

• An aid to clear thinking

• Precise communication between members of the development team.

• System documentation

• Enforcement of good structuring

• An aid to debugging

• An aid to changing systems (maintenance)

• Fast development (with computer aided diagramming)

• Enforcing rigor in specification (when linked to computerized specification)

• Automated checking (with computer-aided tools)

• Enabling end users to review the design

• Encouraging end users to sketch their needs clearly

• linkage to automatic generation of code

• Easy to read

• Quick to draw and to change

• User friendly (because the diagram is obvious in meaning and symbols and

mnemonics which the user may not understand are avoided)

• Good for stepwise refinement

• Can be printed out on normal width paper (without excessive divisions into pieces)

• Automatically convertible to program skeleton

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The aims of the unified graphic technique is :

Requirements

1) To represent

Algorithm

Computer
Program

Documentation
of Computer

Program

2) To facilitate
 —

Algorithm
Design
and maintenance

Programming
and prQgram

maintenance

Documentation
of Computer

Programs

Figure 4.1 Aims of the Unified Graphic Technique

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 GRAPHIC STRUCTURES

There are four types of building blocks which are: Program modules, sequential, selection,

and repetition blocks. Last three types of blocks can be graphically nested within another block

at any desired level. The rightmost line of every block is represented by a common vertical line.

4.2.1 PROGRAM AND PROGRAM MODULES

Program and program modules are used to represent main programs, functions, and

procedures. The graphical representations of main program, function, and procedure blocks

are given in Figures 4.2 - 4.4 respectively.

main

Begin

end

Figure 4.2 Main Program Block

function (parameters)

begin

end

Figure 4.3 Function Block

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

procedure (parameters)

begin

end

Figure 4.4 Procedure Block

4.2.2 SEQUENTIAL BLOCK

Sequential blocks are represented by rectangles. Instructions to appear in a sequential block are

those not involving selection nor repetition. They can be declarations, assignment statements,

comments or any simple sequence of instructions.

varl := var2 + var3

Figure 4.5 Sequential Block

Initial sequential block has additional information such a s :

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Program: Version:

Written
By:
A t:
On:
I n :

Abstract:

Variables:
inputs:
outputs:
list of variables:

Declarations:

Initializations:

Figure 4.6 A Template of an Initial Sequential Block

4.2.3 SELECTION BLOCKS

The basic selection blocks are if-then block, if-then-else block, if -then -elseif block, and case

block. An if-then block consists of a block of code which is executed if the condition specified

after "if' condition is satisfied. As seen in Figure 4.7, the scope of the block is clearly

indicated by "ifendif" pair.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

if (condition)

Then

endif

Figure 4,7 If-then Block

An if-then-else block consists of two blocks of code. If the condition specified after if is

satisfied, then the then block is executed, otherwise the else block is executed (Figure 4,8).

if (condition)

Then

Else

end if

Figure 4.8 If-then-else Block

An if-then-elseif block is represented in Figure 4.9. The final else block is optional.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

if (condition 1)

Then

e lse if (condition/)

e lse if (condition3)

else

end if

Figure 4.9 If-then-elseif Block

A case block, as seen in Figure 4.10, consists of several subblocks. Only one of the

subblocks is executed after entering to the case block. The default subblock is optional and

can be used to detect and process unacceptable values of the control variable.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

switch (control variable)

case 1 :

case 2 :

case 3 :

default :

endsw itch

Figure 4.10 Case Block

4.2.4 REPETITION BLOCKS

Basic types of repetition blocks are while block, For block, and Do-while block. A While

block is executed so long as the condition expressed after while is satisfied (See Figure

4.11).

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

while (condition)

endwhile

Figure 4.11 While Block

for (condition)

endfor

Figure 4.12 For Block

A do while block is represented in Figure 4.13. It is executed so long as the condition

expressed after while is satisfied.

w hile (condition)

Figure 4.13 Do-while Block

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 AN EXAMPLE OF AN ALGORITHM SPECIFICATION USING THE

GRAPHIC SCHEME

Figure 4.14 is an algorithm which is taken from (Stinson, 1985, p.26). It merges two sorted

arrays A and B, of lengths m and n to obtain a sorted array C of length m+n. It is

reexpressed according to the graphical representation scheme. The resulting representation is

given in Figure 4.15. The variables small A and smallB are used to express respectively the

minimums of the arrays A and B, and MAXINT is a huge integer.

ALgorithm merge (A,B,C,m,n);

var i, j, k, samllA, smallB : integer;

begin

i := 1; j := 1; k := 1; smallA := A[i]; smallB := BJj];

While k<= (m+n) do begin

if smallA <= smallB then begin

C[k] := smallA; i := i +1;

if i<= m then smallA := A[i]

else smallA := MAXINT

end

else begin

C[k] := smallB; j := j+ l;

if j<= n then smallB := B[j]

else smallB := MAXINT

end;

k :=k+l

end

end.

Figure 4.14 An Algorithm to merge two Sorted Arrays

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Algorithm to merge two sorted arrays A and B, and obtain C

i := 1

j : = l
k := 1

smallA := A[i]
smallB :=B[j]

w hile k <= (m+n)

if smallA <= smallB

then

else

C[k] := smallA
i := i+1
if i<=m

then

else

smallA := A[i]

smallA := MAXINT

endif

C[k] := smallB

j := j+ l
if j <= n

then

else
end if

smallB := B(j]

smallB := MAXINT

endif

k := k+1

endw hile

Figure 4.15 An Example of an Algorithm Specification
using the Graphical Representation Scheme

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5

ALGORITHM EDITING ENVIRONMENT (A L C)

5.1 FACILITIES PROVIDED

ALC is a menu driven, Computer Aided Software Engineering (CASE) environment which

helps a user to design and edit algorithms in a maner compatible with the C language. It is

based upon the notion of the unified graphic scheme and allows the user to choose between a

number of given structures which are grouped into program modules, repetition blocks, and

selection blocks. Those structures can be placed, nested, copied, moved or deleted. Any

sequential block can be added to those structures. Files, can be loaded from the file system,

stored to a directory, or printed to a laser or impact printer.

The keyword structures can be produced in French or in English. This option can be

selected in the first menu of ALC along with the corresponding user level.

A beginner user level option is also available. This option allows the beginner user to change

his mind when selecting a particular template structure. For instance, when the beginner user

selects an IF template structure, it is displayed in a pop up window in the ALC main window.

At this point ALC prompts the user as to whether or not this is the template that he wants.

This is done by displaying the following prompt in error message window: " Insert this

template YES NO". When the option YES is selected, the template is inserted at thespecified

insertion point Similarly, when the NO option is selected, the template is not inserted and the

pop up window will disappear.

Error messages or any kind of message always appear in a window near the bottom of the

screen. A "BEEF' will sound each time an error occurs and the corresponding error message

will be displayed in that window.

47

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The structure window is the largest window and the most important in the main screen of ALC.

As the structures are selected, they are displayed in that window. When a structure is selected,

its relative position within the file is verified. If it is a wrong position, a "BEEP" will sound,

an error message will appear in the lower window, and the structure will not be inserted in a

wrong place. For the case CASE and IF-ELSEIF-ELSE template structures the user will be

prompted for additional information. This information will be the number of additional

ELSEIF’s etc... that the user wants inserted. The list of the parameters of the procedures and

functions is inserted in the text window after the name of the procedure or function between

brackets. A set of fonts is also provided.

Finally, a help screen can be invoked at any time. This option displays a file named

"ALC.HELP" in a pop-up window over the text window containing the algorithm structures.

This file gives a description of the functionality and how to make use of each option in the

system. ALC must be invoked from the suntools environment. To get into suntools

environment, type suntools from the Sun unix environment Then type ALC. The first screen

i s :

Salact tha Unguiga and laval
By p ra is in g tha 1«ft button
Of tha aouaa, than OX I

WH

Figure 5.1 First Screen of ALC

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The user can select any of the above options by placing the caret on the desired option and

pressing the left button of the mouse. Once the specification language and the corresponding

user level are chosen the user can select the button "OK" to get into the main menu. The option

"EXIT’ exits ALC and returns to the suntools environment

- &L C Comput e r - & i cfc j - A1 oo f i t hat fu s io n .

K jf tg llt tS g Advanced leve l
L^JJejM nerlevel

I French’̂

S a la c t th e language and le v e l
By p re ss in g th e l e f t b u tto n
Of th e laouae, then OK !

I 1 I exit I

Figure 5.2 English Version will be chosen

M f f f f lW i ■h o b

I ^ E n j l l s h J

1

1 r n iveau avanca h
| lllveau d eb u tan t |

S e le c t th e language and le v e l
By p re ss in g th a l e f t b u tto n
Of th e eouae, then OK !

r ~ ok ■I 1 1

Figure 5,3 French Version will be chosen

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The main screen of ALC when the English version is selected is given in Figure 5.4.

Coojputer-AJdedAlMrlthaDes^^n
F1IC .M IK

Messages :
as*wofm ui .1 w ,v,iuiî .iiuû iiuaijaâ a 'wĵ ;mwj!iwiuiuiijijiiaauiî ii.uiuuua «M<mwAwxw

$

Figure 5.4 Main Screen of ALC

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The following figures show the details of editing and updating algorithms. Figure 5.5

shows the screen with specification to insert a program block.

Conputer-Alded A lgorittu Design
F i ! e _ M e P i l a t

Messages :
I r r wmmmsmmmmmm m sm m m

Figure 5.5 Specification to Insert a Program Block

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Figure 5.6 gives the main screen after the insertion of a program (invoked in Figure 5.5)

and specification to insert an If-Then-Elseif block.

ComjMJter-Atd^^
I L-L^E_) IF l!t_n»ne

lf-Then-£1ee
If-Then

MAINO

1 &EC1N

Figure 5.6 Insertion of a Program Block and

Specification to insert an If-Then-Elseif Block

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.7 represents the main screen after the insertion of the If-Then-Elseif block (invoked in

Figure 5.6) and specification to insert a case block.

F l l e j n a e :

Computer-Aided AlgorIthm Design

1 - - P ^ D — 1 L E d i t — J I i f i l e J X I T rT i

fftlapl&y Help_fHe)M odnlca

If-Thon-Els«
If-Then

MHNO

BEBIN

THEN I

ELSE I

ENDIF

Messages

Figure 5.7 Insertion of If-Then-Elseif B lock and

Specification to insert a Case Block

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The insertion of the case block (invoked in Figure 5.7) has been completed. H ie user specify

an insertion of a while block.

Computer-Aided A lgorithn Design
FM e_m sne T l i T

MAIN()

BEGIN

IF

1 H i t Ti l i t

B e l e T m e l lEetarn *r ExitucdXill Bite

THEN | SVnCH
I
I I CASE| | -------------------
I I I B
I I CASE
| | . -----------------------------
I I I| .-------------------
I) DEFAULTI I .-----------------
I I I
I
I END SVITCK

ELSEIF

ELSEIF
• _
I

e l s e i f
• -
I

I else 1

Messages :

Figure 5.8 Insertion of Case Block and

Specification to Insert a While Block

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.9 shows the insertion of the while block (invoked in Figure 5.8).

COTj£Uter-AidedAlgorltM
File_n>Be

Return ta Mela Nana
Rttura ta S aatta la

MAINO

BEGIN

SVITCH

I rH ILE

END WHILE

DEFAULT

END SWITCH

ELSE!

Messages

Figure 5.9 Insertion of the While Block Specified in Figure 5.8

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Editing Functions

This menu, represented in Figure below, is one of the most important menus. It allows the

user to manipulate the different structures within the algorithm.

Edit
Delete Block
Copy Block
Place Block
Move Block

Figure 5.10 Edit Operations Menu

• Copy Block

This selection is used when one wants to copy a block, i.e. a structure from one area to

another. This is done by placing the cursor inside that block, and selecting this option. A copy

of that block will be put in a buffer. To retrieve the copy of the block, use the Place block

option within this menu. Once the block is in the buffer, it can be placed as many times as

wanted. The structures within the block being moved will also move with the block.

• Move Block

To move a block, place the cursor inside the selected block and select the Move Block option.

This will cause the block selected to disappear. To retrieve the block, use the Place Block

option. As many copies of the block as wanted may be retrieved.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

* Delete Block

This option can be selected by positioning the arrow on this label and pressing the left button

on the mouse. It allows the user to delete a block of text. The following steps show how to

delete a block of text

- Place the cursor arrow at the desired template structure to be deleted and then click the

left button on the mouse.

- Place the cursor arrow inside the edit panel, click the left button on the mouse, and

without releasing the button move the cursor arrow up or down in order to select the

Delete block option.

• Place Block

After selecting the Copy Block or Move Block option, this will retrieve the block last copied

or moved and place it at the cursor location.

File Menu Window

Most of the File menu is directly related to operations done on files. The file menu is

given in Figure 5.11.

File

Clear Screen
Load from current directory
Save to current directory

Figure 5.11 File Menu

• Clear Screen

The reset option is used when the user is finished with the current algorithm and plans to start

another one. This operation will clear the text window of any text and the window

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

in which the file name is entered. If any of the text has been modified, the user will be

prompted with the following message in the errors message area. " Erase the current file in the

text window YES NO Choosing the YES option, clears the text window of any text,

and any edits or changes made to the file in the text window will be lost.

• Load File

This option allows the user to load an existing file into the text window. To be able to do so,

the user will first have to specify the file name in the window marked: Filejtame

Enter a file name and try the load option.

• Save File

When this option is chosen, the file under the name that is currently specified in the file name

window will be saved.

• Print File

To be able to print a file, the user has to move the cursor to the print window and enter a file

name. He can use either the laser printer or the impact printer.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

E rror messages window

When an error occurs, a "BEEF’ will sound and a message will be displayed in the error

message area. These are the most important errors which can occur and the possible solutions

that may eliminate the enors. The user can press on the help option each time an error

message is displayed to find the solution. The errors concern the rules applied to the indenta­

tion of the i tructures. Some examples of the rules are the following:

- One of the Main module can exist in a program and can occur only at the first level.

- An "if' structure can not be inserted on the line boxe of the graphic scheme.

- A while structure can not be inserted in a struct block.

- The others rules are most of them the C language rules for the structures.

The following error messages are displayed on the window situated at the lower bottom

of the screen:

- File Cannot be saved : means system error occurred in trying to save the file to the disk.

So the user has to try again.

- File name was not specified : Tried to either load , save or print a file, but did not enter a

file name in the window marked : File_name

So the solution is the to enter a valid file name and retry the option.

- Invalid file name specified, file cannot be found : Tried to load or print a file with an invalid

file name or the file exists but not on the current directory.

Enter a valid file name and retry the option or copy the file to the ALC directory.

- Cannot perform block operation :

The user specified the starting point below the end point in the file.

Then specify the starting point to be above the end point in the file.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

- Invalid insertion point specified :

The user tried to insert text in an invalid position or tried to insert text within a block that was

marked to be moved or copied.

Then move the cursor to a new valid insertion point and retry the insertion option.

- Block has not been specified to be copied or moved :

Attempt was made to move or copy a block of text without specifying which block of text

had to be moved.

- Insertion of the template will violate the language syntax rules :

Attempt was made to insert a template structure in any position which will violate the

language syntax rules.

Editing Facilities

In addition to inserting, deleting, moving blocks, ALC allows the user to use other editing

facilities which consist o f : Insertion point, deleting characters, scrolling buttons, undoing

editing operations, selecting single or span of characters and text window facilities.

5.2 ARCHITECTURE OF THE SYSTEM

ALC is implemented in the C language. It requires the Sun view window environment of the

Unix operating system. ALC uses many window facilities provided by the Sun view window

environment. There are several Sun view window functions and procedures called by the

ALC system. Procedures and functions have also been developed for window management

purpose. To execute the ALC system, The minimum hardware requirement is a SUN 3 / 50

workstation. Figure 5.12 shows the architecture of ALC.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig
ure

5.1

3
Ar

ch
ite

ctu
re

of
A

LC

www.manaraa.com

Chapter 6

ALGORITHM- DIRECTED PROGRAMMING (CALC)

6.1 INTRODUCTION

CALC (Object Code Editor) is a software tool which translates structured algorithms,

produced by ALC using the graphic scheme documented in chapter 4, into C programs.

The algorithms edited in ALC are automatically compatible with the C language. When

creating program structures using ALC, the syntax of the language C is verified as the blocks

are inserted. This guarantees compatibility.

Given a structured algorithm, the major functions of CALC are :

• To transform keywords used in the structured algorithms into their corresponding keywords

in C language.

•To remove all the boxes used when editing structured algorithms.

• To properly indent the C program obtained, to show the block structure.

The use of an ASCII format for the saved algorithms of ALC, allows CALC to be implemen­

ted as a simple text translator.

The CALC window interacts with the ALC window to allow the user to edit either the code

or the corresponding algorithms. Any updates made in the algorithm are reflected in the C

program but not the reverse. Figure 6.1 and Figure 6.2 show the screen of ALC with CALC

when editing algorithm.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Coaguter-Aicte<^
F l l C _ B k M

Messages

Figure 6.1 The Screen of CALC with ALC

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

After saving the algorithm edited in the algorithm window under the filename: example,

the C version of the file example is displayed on the CALC window.

Cotaputer-Alded Algorithm Design
[F l l e _ x a t : L (M iV-J

ELSEIF

I WHILE

I DO

I 1

1 LOOP WHILE

END WHILE

I ELSE I
• — ---------

EHDIF

END

Messages

>
t l x i f (

whlla {
d o t) Mhllt ;

)
}
t ! i i t f {
>
t l x t

Figure 6.2 The File Example is saved and its C Version is

displayed cn the CALC window

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.2 USE OF LEX

Lex is a program generator designed for lexical processing of character input streams. Lex

accepts a problem oriented specification for character string matching, and produces a program

in a general purpose language which recognizes regular expressions. The regular expressions

are specified by the programmer in the source specifications given to Lex. The Lex written

code recognizes these expressions in an input stream and partitions the input stream into tokens

matching the expressions. At the boundaries between tokens, program sections provided by

the programmer are executed.

The Lex source file is a table of regular expressions and corresponding program fragments.

The table is translated by the Lex tool into a program which reads an input stream, and

partitions the input into tokens which match the given expressions, as each such token is

recognized, the corresponding program fragment is executed. The recognition of the

expression is performed by a deterministic finite automaton generated by Lex. The program

fragments written by the programmer are executed in the order in which the corresponding

regular expressions occur in the input stream.

In general, Lex can be used for simple transformations, or for analysis and statistic gathering

on a lexical level.

In the case of CALC as each token is recognized in the ALC input by the lexical analyzer,

the Lex written code outputs the appropriate C language construct.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.3 IMPLEMENTATION OF CALC

CALC program is a Lex specification. It uses boxes and keywords as tokens. Lex will divide

the input (structured algorithm) into tokens. Actions (to be performed when each token is

recognized) are provided in CALC specification.

The format of the Lex specification i s :

{ definitions }

%%

{ rules }

%%

{ programmer subroutines }

In general, the definitions part is optional. For CALC, the definitions are the ALC keywords,

boxes, white spaces and line delimiters. They are used to simplify the format of the rules.

They provide convenient short forms for use in the regular expressions.

The rules represent the programmer's control decisions; they are a table, in which the left

column contains regular expressions and the right column contains actions, program fra­

gments to be executed when the expressions are recognized. An example of rule is given

below:

"ELSE" {

/* some C code */

r

This rule has to look for the string "ELSE" in the input stream and when recognized executes

the program fragment code between the two braces. This code fragment can access C

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

subroutines present in the programmer subroutines section of the specification.

In CALC specification the host procedural language is C and the C library function are also

used.

By using the ALC source format, translation to other procedural languages can be provided by

writing a translator like CALC for each target language.

To simplify the implementation of back-spacing to cancel indentation, the subroutine

rev jnden i () inserts ASCII back-space characters in the output The output is then processed

by a program called translator to interpret the back space as deletions of the preceding blanks.

The appropriate characters are completely removed from the output.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 7

ORGANIZED REPRESENTATION OF C PROGRAMS (ORC)

7.1 INTRODUCTION

ORC (Organized Representation of C Programs) is a software package to document

syntactically correct C programs. The documentation which is automatically generated by

ORC is a structured flowchart of a C program.

ORC accepts as input a C source file which may consist of a complete C program, or one of

several subprograms (procedures and / or functions). The graphic scheme used in ORC was

documented in Chapter 4. When documenting the programs, the statements which are too long

to fit on one line are intelligently wrapped onto several lines. The lines are wrapped at word,

or token boundaries, whenever possible.

ORC is implemented on a Sun Workstation. It is written in C using SunView functions.

Examples of ORC documentation

The following two examples show the types of documentation generated by ORC. The first

example is provided to show the graphical representation of an if-then-else, a while, and a for

structures. Figure 7.1 is a C program to find all lines matching a pattern and Figure 7.2 is the

ORC'ed documentation of the C program. The second example depicts the graphical docu­

mentation of a case statement. Figure 7.3 shows a C program to count digits, spaces and

others characters. Figure 7.4 provides the ORC’ed documentation of the C program which is

given in Figure 7.3.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

fdefine MAXLIGNE 1000
main{) /* find all lines matching a pattern */
{

char ligne[MAXLIGNE];

while (avoirligne { ligne , MAXLIGNE) > 0)
if (position (ligne,"the”) >- 0)

printf ("%s",ligne);

}

avoirligne (s,limite) /* get line into s, return length */
char s [];
int limite;
{

int c,i;
i = 0;
while (— limite > 0 && (c=getchar()) != EOF && c != '\n')

s[i++] = c;
if (c == '\n')

s[i++] - c;
s[i] = '\0' ;
return (i) ;

}

position (s,t) /* return index of t in s, -1 if none */
char s [], t [] ;
{

int i , j, k;

for (i= 0;s[i] != 'O' ; i++) {
for (j=i; k=0 ; t[k] && s[j] == t [k] ; j++, k++)

if (t[k]'== '\0')
return(i);

}
return(-1) ;

Figure 7.i A C Program to Find all Lines Matching a pattern

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

 . - _ —
I « d l f l n t MRXLIGNE 1000 I
I maln() I
I /* f i n d t i l l l n e e m at ch in g a p a t t e r n • / i
 -
I c ha r Hgne(KRXLIGNE]; I4--
I w h i l e (a v o i r l i g n e (lIgne,MRXLICNE}>0) f
| 4--- -
I | l f (p o e l t l o n (l l g n e , * t h e ’)>-0) 1I | *---+
i | I TKEHIpr ln t f (■»»*, l i g n e) ; t
I 1 ♦--------- +
I J ENDIF I| 4-- -
I ENDWHILE I
« ----------------------------- 4

4 —4

t a v o i r l i g n e (a, U n i t e) I
I / • g e t l i n e I n t o e , r e t u r n l e n g t h • / !
4 - - -------- — --------------- --------------------- _ ---------------------- ------------ ------------ — — ---------------------- ------------ — — - - - — - ♦

I c h a r ■ [) ; I
I I n t U n i t e ; I

+ — _ _ _ _ _ _ _ — _ _ _ _ _ _ _ — - — - +

I I n t c , 1; I
I 1- 0; I -
1 whi l e (- - l l m l t e > 0 t i (e - g e t c h a r O) l - E 0 F t * c ! - ' \ n ') I
| — ----------— ------------ — -- - — — -----------— -------- -----—-——— - 4

I | s (l + +) - c ; I
| 4

I ENDWHILE I
* ---------------- _ _ -----------------_ _ _ _ _ _ _ _ ------------ ------------------- -------------- -------------- -----------------_ _ _ _ _ _ _ _ _ _ _ — ------------------------------ 4

I l f (c - - ' \ n ' » I
I 4 --
I ITHENj * [l + +) - c ; |
| 4 --4

I ENDIF I

I * (l) - ’ \ 0 ' ; I
I r e t u r n (1) ; I

 . - - . _ -- .------------ 4

p o s i t i o n (e , t)
/* r e t u r n i ndex o f t i n a, - 1 i f none * /

c ha r i l l . t l) ;

1 n t 1 , 3 , It;

f o r (1 - 0 ; * [1 j I O ' ; 1 4 4)
4 ----—----------------- ~ ------------------------------------- --------------------- --------------------- ---------------------

(f o r (j - 1 ; k - 0 ; t [k]! - ' \ 0 ' 4 t * [J] - « t [k | ; j+4,k+4)
| +--
I I ;
|--- 4 ---
IENDFOR

| l f (t | k l — *\o>i
I +-------------------
I |THEN I r e t u r n (i) ;
| 4 ----------------------------
I ENDIF

ENDFOR

I r e t u r n (—11;

F i g u r e 7 . 2 Or ga n i ze d R e p r e s e n t a t i o n o f t h e C Program g i v e n

i n F i g u r e 7 . 1 .

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

main() /* count digits,white space,others * /
{

int c,i,blancs, autres,chiffre[10J;
blancs - autres - 0 ;
for (i-0;i<10;i++)
chiffreli] - 0;
while ((c-getchar ()) 1-EOF)

switch (c] {
case 'O'
case '1'
case '2'
case '3'
case '4'
case '5'
case '6'
case '7'
case '8'
case '9'

chiffre[c-'O']++;
break;

case '\n' ;
case '\t' : .
case ' ' :

blancs++;
break;

default ;
autres++;
break;
}

printf {"chif fres*-");
for (i-0;i<l0;i++) {

printf("%dw,chiffre[i]);
printf ("\blancs espace ••%d,autres “ %d\n",blancs, autres);

}
)

Figure 7.3 A C Program to count digits, white space and others

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

main ()
I* count digits,white space,others */

Int c,1,blancs,autres,chiffre[10] ;
blancs-autres-O;

for(l-0;l<10;i++)

Ichiffre[i1-0;

ENDFOR

while ((c-getchar ()) ! -EOF)

|switch(c)

+ ---
case '0'
case '1'
case '2'
case '3'
case '4'
case '5'
case '6'
case '7'
case '8'
case ' 9'

Ichiffre[c-'O')++;
<-|- break;

case '\n' :
case 1 \t' :
case ' ' :

+------------------
|blancs++;

<-|- break;

default:
+ ---------------------
|autres++;

<-|- break;

IENDSWITCH
+ --

ENDWHILE

printf("chiffres-");

for(i-0;i<10;i++)
+ “ — — — ----------------------

tprintf ("%d",chiffre[i]);
tprintf("\blancs espace -td,autres - %d\n",blancs,autres);
 --

ENDFOR

Figure 1.4 Organized Representation of the C Program given
in Figure 7.3.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7.2 USING ORC

Once the user types ORC, the screen given in Figure 7.5 will appear.

ORC-: Oraa'nized Representation of C Programs
Load Dir
Inpu t F ile
Output F ile
V idth : [85]
Column : [2] 1
Continuous Form?
Page Header #!1nes
Page Footer # lin e s

) ________

/hom e/s1m 1/usrl/g rad /ouerd /dem onstra t1on
example
output

66 W B B I 132

O Yes

Help Fonts
p r in t o u tp u t f i l e

i Quit i

Figure 7.5 The ORC Screen

• A set of pull down menus are provided to facilitate the use of OF

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

After entering the input file and the output file, the user can select the run file option to

document the input file. The output file will be displayed on the screen. (See Figure 7.6.

below).

ORC: Organized Represent a t i on o f . C Prbgrems
Load Dir : /hom e/s1m l/usrl/grad/ouerd/dem on9tr8t1on
Input Fi le : example
Output F ile : ou tput
V1dth : [85)
Co limn

I

[2] 1
Continuous Form? *->Yes
Page Header #H n es : [2] 0
Page Footer #11nes : [2] 0

Help 1 ________ 1 Fi le 1

J S
□ 5

L fpn ts j Cancel
Confirm

I # define MAXLINE 1000
j na1n()
j /* find a l l l in e s matching a p a tte rn * /

I {
| char 1ine[MAXLINE];

| uh11e (g e tl1 n e (11ne,MAXLINE)>0)
j +---
J |if (in d e x (l1 n e ,”th e M)>=0)
| | +--------------------------------------
I ! |T H E N |prin tf("X s",1in e);i i ^ _______________________
1 j ENDIF

ENDVHILE

I >
+ = = =

Figure 7.6 The ORC'ed file of the input file specified in Figure 7.5.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A set of parameters are provided for the user of ORC. The meaning of each of the various

parameters is given below:

♦ Input F ile : This field selects the input filename to be processed. This file should contain

valid C source file.

• Output F ile : This field selects the output filename to be used while processing. The output

file will contain the Organized Representation corresponding to the input file.

• Width : This field sets the width parameter for the structures blocks. The meaning of the

width is shown in Figure 7.7.

♦ Column: This field sets the column parameter for the structures blocks. The meaning of

the column parameter is shown in Figure 7.7.

♦ Continuous Form : This field selects the option "YES" or "NO". The purpose of this

parameter is decide whether or not the user wants the page breaks or not

in the output document

* Page Header #lines : This field sets the header parameter. The meaning of this parameter is

shown in Figure 7.7.

• Page Footer #lines : This field sets the footer parameters. The meaning is shown in

Figure 7.7.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

i L

Header lines

11

Fooler lines

Figure 7.7 The Meanings of the Conversion Parameters are shown

for an Example Block in the Output

Default and Valid Values of the Param eters:

In Figure 7.7, we used "[]" to represent default values of the parameters. The default values

for the ORC parameters have been chosen to provide the user with a quick and easy way to get

a nice looking output document from the ORC system. They are shown in Figure 7.8.

Default Values Valid Values

Parameter name Limit
Lower Upper

Input File none

Output File none

Width 85 66 132

Column 2 1 5

Pace Header
fines

2 0 5

Pace Fooler
lines

2 0 5

Figure 7.8 Default and Valid Values usee' for the Parameters

o f ORC

76

-width-

cotumn

if (tlkj — \0‘)

THEN

ENDIF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7.3 IMPLEMENTATION OF ORC

The purpose of ORC is to generate from a source program a structured output of the same

source input The user specifies the source file to be analyzed. One string of source code will

be transmitted at a time to the lexical analyzer or scanner.

The lexical analyzer will transform each string into series of tokens. Once the entire source

program has been analyzed, the control is passed to the output generator through two

temporary files. One contains the tokens, and the other, the actual value of the non-keyword

tokens.

Since the entire program has been transformed in a series of tokens, the output generator will

reconstruct the source code by using those tokens. It will produce the same source program in

a structured fashion.

Tokens are useful to the output generator for recognizing structures of C.

This approach is used for its simplicity to recognize the structures when all the tokens are

clearly identified.

7.3.1 DATA FLOW DIAGRAMS

Figure 7.9 to Figure 7.13 show data flow diagrams of ORC.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Source C code Token

GenerateScan source
code .

Accept user’s
parameters

Menu parameters
output

IdentifierOptions

Present menu
after typing
. ORC J

User

C code documented

Figure 7.9 ORC Document Generator

78

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Source
string

Isolate

substring

Substring

Keyword

IdentifierComment

Transform Transform
identifier in

token
comment in
V token

Transform
keyword in
. token j

Categorize __

substring / ©

Token

Token Identifier

Figure 7.10 Scan Source Code

79

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright ow
ner.

Further reproduction
prohibited

w
ithout perm

ission.

Generate
external

declaration

Token

Identifier

Token

Generate
program

name

'OUTPUT
Identifier

Generate
internal

declaration { Generate
I block

structure

Figure 7.11 Generate Ouput

8 0

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Token Identifier

/ Generate >
If-Then-Hse
V Structure j

Generate
Do-While
Structure

Generate
for

Structure

TokenIdentifier

OUTPU

Generate'
Sequential

Block j

Generate
Case

.Structure

IdentifierGenerate
While

StructureToken

Figure 7.12 Generate Block Structures

8 1

www.manaraa.com

Comment
Analyse

Comment

Complete
comment iened comment

Transform
Open comment

in token

' Transform
Complete commem

V in token /

Identifier.

Token

Figure 7.13 Transformation of Comment into Token

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 8

CONCLUSION AND FURTHER RESEARCH

An algorithm directed CASE environment has been implemented and provides important

features to enhance comprehension and understanding of algorithms and C programs. Its

main purpose is to improve productivity in systems developments and to :

• Facilitate maintenance of existing systems

• Obtain more complete documentation

•Reuse code

• Reduce error and thereby improve quality and user satisfaction

• Built-in quality

The basic building blocks (i.e., sequential, selection, and repetition blocks) used in the graphic

scheme do not require detailed understanding of programming. Therefore they can be taught,

learned, and assimilated very early in the education process.

The logical structure of the algorithm is identical to the logical structure of the program. It is

better seen with a graphic technique.

- The chances of detection and elimination of logical errors are increased

- Comprehension of algorithm is enhanced

- Modification of algorithms can be done with ease and it may be less error prone.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ALC is designed for ease of use by novice programmers in a teaching situation. There was a

need for something straightforward to use, particularly for novice programmers, which would

help in the construction and teaching of programs. The system provides a very important

pedagogical tool.

ALC makes the transition from design to code easier. The correct syntax (i.e, the structures

used in the algorithm follow a certain syntax) for algorithm is ensured.

The menus make the system easy to use and friendly.

The C program is displayed in a parallel window to the algorithm window. In this way, the

users can obtain immediate feedback on the coverage of program elements, while still inside an

editing session.

FUTURE WORK

The statements included in the algorithm can be checked in the C program by adding a Yacc

specification to the Lex specification used in CALC.

Furthermore, the diagrams displayed in the ALC text window can be collapsed, i.e ; only the

first n levels of structure will be shown.

The research which uses the graphic scheme continues at the Computer Science Department of

the University of Ottawa. The activities include extension of the building blocks to other

structured languages and other concepts. This includes investigation of building blocks for

"concurrent activities" as well as for object-oriented languages such as C++ and Smalltalk.

It is hoped that the system implemented in this thesis will prove its merits to educators as well

as to professionals for the conception and design of well-structured algorithms and programs.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFERENCES

Bachman,C., A CASE for Reverse Engineering, Datamation .July 1,1988.

Chikofsky, E.J., Cross, H., J.H., (1990.) Reverse Engineering and Design Recovery :
A Taxonomy , IEEE Software.

Chikofsky, E.J., Rubenstein, B.L., (1988.) CASE : Reliability Engineering for
Information Systems . IEEE Software.

Communications of the ACM (1986.), 29: 11 (Nov.), 1023.

Dyck, V.A., Lauson, J.D., Smith, J.A., (1979.) Introduction to Computing Structured
Problem Solving Using WATFIV-S. Reston Publishing Company, Inc. A Prentice
Hall Company, Reston, Virginia.

Faroult, S., Simon, D. (1986.) Fortran Structure et M6thodes Num&iques, Dunod, Paris,
France.

Grogono, P., Nelson, S.H. (1982.) Problem Solving and Computer Programming,
Addison - Wesley.

IBM Journal of Research and Development, Programming Languages and Languages
Processors, pp.657-800 • Index, Vol.24, No. 6, Nov. 1980.

Knuth, D.E. (1973.) The Art of Computer Programming, Vol. I : Fundamental
Algorithms. Reading, Mass.: Addison- Wesley.

Martin, J. and McClure, C. (1985.) Diagramming Techniques for Analysts
and Programmers. Prentice - Hall.

85

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

McClure, C., (1988a.) Characteristics of a CASE System. Extended Intelligence, Inc.

McClure, C., (1988b.) Introduction to the CASE Technology. Extended Intelligence, Inc.

Mitchell.W. (1984.) Prelude to Programming, Problem Solving and Algorithms .
Reston.

Oren,T.I., L.G.Birta, O.Abou-Rabia, D.G.King, and R. Wendt (1990 - In Press).
E/Slam: A Software Understanding Environment for SLAM II Programs. In
Proceedings of European Simulation Multiconference (Erlangen-Nuremberg,
Germany, June 10-13,1990), SCS, La Jolla, CA.

Oren, T.I. (1984.) Graphic Representation of Pseudocodes and Computer Programs:
A Unifying Technique and a Family of Documentation Programs. In: Proc.of
EdComp Conf 83 (First Educational Computing Conf. of IEEE Computer Society),
D.C.Rine (Ed.). San Jose, Ca., Oct. 18-20,1983. IEEE Computer Society, New
York, pp. 81-89.

Oren, T.I., King, D.G., (1989.) ORFOR : Organized Representation of Fortran
Programs on a Sun Workstation. TR-89-16. Computer Science Department,
University of Ottawa, Ontario, Canada.

Perrone, G., Marietta, M., (1987.) Low -cost CASE : Tomorrow's Promise Energing
Today, COMPUTER.

Shuller, H.E., (1987.) Requirements for Computer Aided Software Engineering Tools.
CASE studies 1987 Conference.

Stinson, D.R. (1985.) An Introduction to the Design and Analysis of Algorithms.
Winnipeg, Manitoba, Canada, CBRC.

Sun Microsystems (1986a.) Windows and Window Based Tool: Beginner's Guide.
Sun Microsystems, Inc., Mountain View, California, U.S.A.

Sun Microsystems (1988). Programming Utilities and Libraries. Sun Microsystems,
Inc., Mountain View , California, U.S.A.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Sun Microsystems (1986b.) Sun View Programmer’s Guide. Sun Microsystems,
Inc., Mountain View , California, U.S.A.

Venable, J.R., Duane, P.TRUX III., (1988.) An Approach for Tool Integration in a
CASE Environment. CASE studies 1988 Conference.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

